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Mean-field models for nuclear structure and reaction studies

Outline of the presentation

© Theoretical approaches for nuclear many-body problem

o Ab-initio vs phenomenological models based on energy density functionals (EDF)
o Effective interaction and nuclear matter (NM) Equation of State (EoS)

© Extended EDF-based models: recent developments and results

® Bridging ab-initio with phenomenological EDF approaches

@ Benchmark on microscopic pseudo-data for low-density neutron matter
@ Power counting analysis based on many-body perturbative expansion

© Beyond mean-field: many-body correlations and clustering phenomena

o Neutron star (NS) crust modelization for a global and unified EoS
e Embedding short-range correlations within relativistic approaches

© Summary and perspectives within MONSTRE
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Mean-field models for nuclear structure and reaction studies

Theoretical models for EoS and finite nuclei

@ Ab-initio approaches based on many-body expansion (QI;X’)O
o Realistic or effective field theory (EFT) interactions
= Diagrammatic hierarchy (power counting) (QN/IRO)Z
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Mean-field models for nuclear structure and reaction studies

Theoretical models for EoS and finite nuclei

@ Ab-initio approaches based on many-body expansion (QI;I?X)(, X}
o Realistic or effective field theory (EFT) interactions
o XKk

= Diagrammatic hierarchy (power counting) @A HH[I

@ Phenomenological models with effective interaction

Mean-field
approximation

o Self-consistent mean-field (MF) approximation
o Fit of parameters to reproduce various data

Self-consistent
mean-field
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Mean-field models for nuclear structure and reaction studies

Theoretical models for EoS and finite nuclei

= Diagrammatic hierarchy (power counting)

@ Ab-initio approaches based on many-body expansion (QI;I(\)X)“ ><H
o Realistic or effective field theory (EFT) interactions .
o XK

@bl

Mean-field
approximation

@ Phenomenological models with effective interaction

o Self-consistent mean-field (MF) approximation
o Fit of parameters to reproduce various data

Self-consistent
mean-field

@ Energy Density Functional (EDF) theory

E = (W Run(p) ) = [ E()dr > Eos

|W) = independent many-particle state
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Mean-field models for nuclear structure and reaction studies

Theoretical models for EoS and finite nuclei

@ Ab-initio approaches based on many-body expansion (QI;I(\)) ><~ }
o Realistic or effective field theory (EFT) interactions X* | ]
= Diagrammatic hierarchy (power counting) g/l;xo [ H H ’

Mean-field
approximation

@ Phenomenological models with effective interaction

o Self-consistent mean-field (MF) approximation
o Fit of parameters to reproduce various data

Self-consistent
mean-field

@ Energy Density Functional (EDF) theory

E = (W] Rui(p) V) = [ €()dr > Eos

|W) = independent many-particle state

= Description of ground state and excitations
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Mean-field models for nuclear structure and reaction studies

Nuclear structure: neutron skin and pygmy resonance

o

Strength

@ Non-relativistic Skyrme-like EDF o mud €
@ Structure of neutron-rich nuclei oo 1%
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Mean-field models for nuclear structure and reaction studies

Merging nuclear structure and reaction studies

@ Pre-equilibrium in charge-asymmetric reactions 60

32504%8Ni, b=2fm

— 40| asysoft — 40f —— SAMi-J27
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@ Interplay between fusion and quasi-fission processes &1
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@ Same framework as for nuclear structure = Merging with reaction studies

@ Role of different terms of effective interaction (and EoS) on final outcomes

e Importance of momentum dependent + surface terms (+ symmetry energy)

@ Heavy ion collisions are reliable tools to extract information of EoS!
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Link to ab-initio: low-density expansion and power counting

Outline of the presentation

© Extended EDF-based models: recent developments and results

® Bridging ab-initio with phenomenological EDF approaches

e Benchmark on microscopic pseudo-data for low-density neutron matter
o Power counting analysis based on many-body perturbative expansion

© Beyond mean-field: many-body correlations and clustering phenomena

o Neutron star (NS) crust modelization for a global and unified EoS
e Embedding short-range correlations within relativistic approaches
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Outline of the presentation

© Extended EDF-based models: recent developments and results

® Bridging ab-initio with phenomenological EDF approaches

e Benchmark on microscopic pseudo-data for low-density neutron matter
o Power counting analysis based on many-body perturbative expansion
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Link to ab-initio: low-density expansion and power counting

Pure neutron matter (PNM) low-density expansion

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas
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Link to ab-initio: low-density expansion and power counting

Pure neutron matter (PNM) low-density expansion

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas

@ Lee-Yang expansion in (askr) from EFT (v; = 2,4 for PNM, symmetric NM)
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Link to ab-initio: low-density expansion and power counting

Pure neutron matter (PNM) low-density expansion

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas

@ Lee-Yang expansion in (askr) from EFT (v; = 2,4 for PNM, symmetric NM)
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@ New class of EDFs inspired by EFT
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Link to ab-initio: low-density expansion and power counting

Pure neutron matter (PNM) low-density expansion

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas

@ Lee-Yang expansion in (askr) from EFT (v; = 2,4 for PNM, symmetric NM)
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@ New class of EDFs inspired by EFT v Application to drops & nuclei = surface
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X Improving neutron effective mass prediction
X Implementation in dynamical models
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Link to ab-initio: low-density expansion and power counting

Pure neutron matter (PNM) low-density expansion

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas

@ Lee-Yang expansion in (askr) from EFT (v; = 2,4 for PNM, symmetric NM)
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@ New class of EDFs inspired by EFT v Application to drops & nuclei = surface

o [fm”] [S. Burrello et al., PRC 103(6), 064317 (2021)]
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X Improving neutron effective mass prediction
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la, ke, | X Implementation in dynamical models

v Finite temperature (T) = X impact on NS modelization (“pasta” formation)
[S. Burrello & M. Grasso, EPJA 58(2), 22 (2022)]
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Link to ab-initio: low-density expansion and power counting

Outline of the presentation

© Extended EDF-based models: recent developments and results

® Bridging ab-initio with phenomenological EDF approaches

o Power counting analysis based on many-body perturbative expansion
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Link to ab-initio: low-density expansion and power counting

Beyond MF: towards a power counting in EDF

@ Beyond MF (BMF) = correlations taken into account (double-counting)
o Hierarchy of interaction (and EoS) contributions = power counting in EDF

@ EoSs at next-to-leading order (NLO) for symmetric NM (SNM) and PNM
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X Expansion parameter o (i o i)

X Breakdown scale
[S. Burrello, C.J. Yang, M. Grasso, PLB 811, 13593 (2020)]

v/ BMF study of closed-shell nuclei [C.J. Yang et al., PRC 106 (1), L011305 (2022)]

Clustering and two-body correlations in EDF-based models



Outline of the presentation

© Extended EDF-based models: recent developments and results

© Beyond mean-field: many-body correlations and clustering phenomena

o Neutron star (NS) crust modelization for a global and unified EoS
e Embedding short-range correlations within relativistic approaches
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Pairing correlations and nuclear superfluidity

@ Pairing effects on mechanical (spinodal) instability in low-density nuclear matter
= variation on compressibility and isotopic content of the clusterized matter

[S. Burrello, M. Colonna, F. Matera, PRC 89 (2014)]
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= cooling process in proto-NS (PNS)
or pre-bounce of supernova explosions

[S. Burrello, M. Colonna, F. Matera, PRC 94 (2016)]
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Neutron star crust and unified equation of state

Clustering phenomena and neutron star crust

@ Many-body (short-range) correlations (SRCs) below po

o Formation of bound state of nucleons (clustering)

Clustering and two-body correlations in EDF-based models



Neutron star crust and unified equation of state

Clustering phenomena and neutron star crust

@ Many-body (short-range) correlations (SRCs) below po
o Formation of bound state of nucleons (clustering)
@ Phenomenological models with clusters

o Dilute matter as a mixture of nucleons and nuclei
= Nuclear statistical equilibrium (NSE) model
[A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
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Neutron star crust and unified equation of state

Clustering phenomena and neutron star crust

@ Many-body (short-range) correlations (SRCs) below po
o Formation of bound state of nucleons (clustering)

@ Phenomenological models with clusters

o Dilute matter as a mixture of nucleons and nuclei
= Nuclear statistical equilibrium (NSE) model
[A. R. Raduta, F. Gulminelli, PRC 82, 065801 (2010)]
o Unified description of NS EoS & crust-core transition

v Composition and heat capacity of NS inner crust
[S. Burrello et al., PRC 92, 055804 (2015)]

Yield
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Neutron star crust and unified equation of state

In-medium effects and cluster dissolution

@ Cluster dissolution approaching saturation from below
= Mott effect ruled by Pauli blocking
o Geometrical excluded-volume mechanism
@ Microscopic in-medium effects

deuteron mass fraction X
)
[

0 I,x IJ -
10 10° 10° 10 10
baryon density n,, [fm”]
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Neutron star crust and unified equation of state

In-medium effects and cluster dissolution

@ Cluster dissolution approaching saturation from below :); SPELEEE
= Mott effect ruled by Pauli blocking fgj ]
o Geometrical excluded-volume mechanism Zos b
o Microscopic in-medium effects = Mass-shift (Am) E o E
@ Generalized relativistic density functional (GRDF) % §§ E
= Meson exchange with density dependent couplings 8-1 . . ]

e 3 =) =
[S. Typel et al., PRC 81, 015803 (2010)] 10 10 10 10 10
baryon density n, [fm”]
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Neutron star crust and unified equation of state

In-medium effects and cluster dissolution

@ Cluster dissolution approaching saturation from below

= Mott effect ruled by Pauli blocking ;’2:3
o Geometrical excluded-volume mechanism 2os
o Microscopic in-medium effects = Mass-shift (Am) E 32
@ Generalized relativistic density functional (GRDF) ‘g 0
= Meson exchange with density dependent couplings gul — . 5
[S. Typel et al., PRC 81, 015803 (2010)] 10° 10° 107 10! 10/

baryon density n, [fm”]

@ Mass-shift obtained by solving the in-medium many-body Schrédinger equation
o Parameterization as function of density (np), isospin asymmetry (3), T

@ Heuristic extrapolation beyond Mott density to prevent the clusters to reappear
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Short-range correlations within relativistic approaches

Short-range correlations and EoS at high-density

@ Nucleon knock-out in inelastic electron scattering

Free Fermi Gas

[O. Hen et al. (CLAS coll.), Science 346, 614 (2014)] A

SN N

@ SRCs from tensor components or repulsive core

o Smearing of Fermi surface (high-k tail at T=0)

o Two-body (2B) correlations in np Sy channel %ﬂ;\ N
o Pairs amount to & 20% of the nucleon density 0 K ki
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Short-range correlations within relativistic approaches

Short-range correlations and EoS at high-density

@ Nucleon knock-out in inelastic electron scattering
[O. Hen et al. (CLAS coll.), Science 346, 614 (2014)] ;
o SRCs from tensor components or repulsive core i
o Smearing of Fermi surface (high-k tail at T=0) i
o Two-body (2B) correlations in np 3S; channel DM
o Pairs amou(nt t)o ~ 20% of the nucleon density %\ “

k. ok

v/ Embedding SRCs in relativistic MF with quasi-deuterons = EoS at high-density
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Short-range correlations within relativistic approaches

Short-range correlations and EoS at high-density

@ Nucleon knock-out in inelastic electron scattering
[O. Hen et al. (CLAS coll.), Science 346, 614 (2014)] ;
o SRCs from tensor components or repulsive core i
o Smearing of Fermi surface (high-k tail at T=0) i
o Two-body (2B) correlations in np 3S; channel D>
o Pairs amou(nt t)o ~ 20% of the nucleon density k%f “

v/ Embedding SRCs in relativistic MF with quasi-deuterons = EoS at high-density

[S. Burrello & S. Typel, EPJA 58, 120 (2022)] — b3 ! B ! E‘
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X Extension to finite T (+ momentum of clusters with respect to medium)

X Inclusion of quasi-deuterons within a kinetic approach [coll. with R. Wang + INFN CT]
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Short-range correlations within relativistic approaches

Covariant formulation of 2B quantal problem

@ Single-nucleon momentum distribution = in-medium 2B wave function (wf)

@ Self-consistent calculation with relativistic MF effective interaction
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Short-range correlations within relativistic approaches

Covariant formulation of 2B quantal problem

@ Single-nucleon momentum distribution = in-medium 2B wave function (wf)
@ Self-consistent calculation with relativistic MF effective interaction

@ Covariant formulation of 2B quantal problem

o Bethe-Salpeter approach (existence of negative-norm “ghost” states)
@ Breit equation (singular operators unmanageable non-perturbatively)
o Two-body Dirac equations (2BDEs) of constraint dynamics [Crater & Van Alstine]
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Short-range correlations within relativistic approaches

Covariant formulation of 2B quantal problem

@ Single-nucleon momentum distribution = in-medium 2B wave function (wf)
@ Self-consistent calculation with relativistic MF effective interaction

@ Covariant formulation of 2B quantal problem

o BetheSalpeterapproach (existence of negative-norm “ghost” states)
o Breitequation (singular operators unmanageable non-perturbatively)
o Two-body Dirac equations (2BDEs) of constraint dynamics [Crater & Van Alstine]
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Short-range correlations within relativistic approaches

Covariant formulation of 2B quantal problem

@ Single-nucleon momentum distribution = in-medium 2B wave function (wf)
@ Self-consistent calculation with relativistic MF effective interaction
@ Covariant formulation of 2B quantal problem

o Bethe-Salpeterapproach (existence of negative-norm “ghost” states)
o Breitequation (singular operators unmanageable non-perturbatively)
e Two-body Dirac equations (2BDEs) of constraint dynamics [Crater & Van Alstine]

v/ Covariant description of deuteron bound and scattering states through 2BDEs

[S. Burrello & S. Typel, in preparation]
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X Application to nuclear and particle physics (meson spectroscopy, sexaquark, . ..)
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Short-range correlations within relativistic approaches

Outline of the presentation

© Summary and perspectives within MONSTRE
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Short-range correlations within relativistic approaches

Final remarks and conclusions

@ Bridging ab-initio with phenomenological EDF approaches

@ Beyond mean-field extension: many-body correlations and clustering

@ Application to neutron drops and nuclei of ab-initio-benchmarked EDFs

@ NLO perturbativity of renormalized scheme compatible with power counting
@ Neutron star crust composition and effects of clusters on cooling process

@ Embedding SRCs through quasi-deuterons within relativistic approach

Further developments and outlooks

@ Improving properties of EFT-inspired EDFs and dynamical implementation

@ Inclusion of SRCs at finite T and light clusters within a kinetic approach

@ Momentum distribution from in-medium wf + comparison with experimentsJ
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Short-range correlations within relativistic approaches

Final remarks and conclusions

@ Bridging ab-initio with phenomenological EDF approaches

@ Beyond mean-field extension: many-body correlations and clustering

@ Application to neutron drops and nuclei of ab-initio-benchmarked EDFs

@ NLO perturbativity of renormalized scheme compatible with power counting
@ Neutron star crust composition and effects of clusters on cooling process

@ Embedding SRCs through quasi-deuterons within relativistic approach

Further developments and outlooks

@ Improving properties of EFT-inspired EDFs and dynamical implementation

@ Inclusion of SRCs at finite T and light clusters within a kinetic approach

@ Momentum distribution from in-medium wf + comparison with experiments}

THANK YOU FOR YOUR ATTENTION!
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Short-range correlations within relativistic approaches

Back-up slides

© Extended EDF-based models: recent developments and results

© Bridging ab-initio with phenomenological EDF approaches
@ Benchmark on microscopic pseudo-data for low-density neutron matter
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Short-range correlations within relativistic approaches

Lee-Yang-based EDFs: YGLO and ELYO

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas
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Short-range correlations within relativistic approaches

Lee-Yang-based EDFs: YGLO and ELYO

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas
@ Lee-Yang (LY) expansion in (askr) from EFT (v; = 2,4 for PNM, SNM)
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Short-range correlations within relativistic approaches

Lee-Yang-based EDFs: YGLO and ELYO

@ Dilute PNM (a; = -18.9 fm) = close to unitary limit of interacting Fermi gas
@ Lee-Yang (LY) expansion in (askr) from EFT (v; = 2,4 for PNM, SNM)

E  h2kZ[3 2 4
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N = o 5 =15 (kras) + (4 = 1) 5 )(keas)? +
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@ Combining EDF with LY expansion:
o Yang Grasso Lacroix Orsay (YGLO)

N S R TR SN B RPN R ‘7 [C.J. Yang, M. Grasso, D. Lacroix, PRC 94, 031301 (2016)]
0 003 006 009 012 015 018 021 024 027 03

p [fm”] o Extended Lee-Yang Orsay (ELYO)
[M. Grasso, D. Lacroix, C.J. Yang, PRC 95, 054327 (2017)]
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Short-range correlations within relativistic approaches

Bridging with EFT: benchmark on ab-initio results

@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)

B;
— V[l 2 . 8/3 - o(a+2) o] = !
Ey = Yillo™ + Dip™ ™ + Fipl®™, Vil = 1 s s
2nh2 vy — 1 6 [6m2\'/?
B =i, R,-:i( il ) (11-2In2)a;, a=07
m vi 357 v;
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Bridging with EFT: benchmark on ab-initio results
@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)

B:
— V[l 2 . 8/3 - p(a+2) o] = !
Ey =Yilplp® + Dip®> + Fip'®™™,  Vilp] 1 Rip'3 1 Gp2/3
272 v — 1 2\1/3
g, = 2t vi—t, R,:i(6“> (11-2In2)a, a=07
m v; 35w \ v

@ Benchmark on ab-initio pseudo-data = reproduction of PNM QMC calculations

0 0005 004 0135
T

—— YaLowh

la, ke o
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Bridging with EFT: benchmark on ab-initio results

@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)
B;
—vi12 . 8/3 F. (at2 SO i

Ey = Yilplp* + Dip®® + Fipl¥2), Yi[p] = T R Cpol3

02 1 2\ 1/3
B;:LhLa' R: 6 (671') (11 —21In2) 5, a=0.7

is i =
m Vi 357 Vi

@ Benchmark on ab-initio pseudo-data = reproduction of PNM QMC calculations
@ Spread of data at higher density = YGLO (FP) and YGLO (Akmal)

T 50 p [fm~]
“ —— YGLO (Akmal) o 0005 004 0135
|-+ — YGLO(FP) —405 T T T
— From ""*Pb ~ o=t E ——YaLo )
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120, . ld
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Bridging with EFT: benchmark on ab-initio results
@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)

B:
— V[l 2 . 8/3 - p(a+2) o] = !
Ey Yl[p]p + Dip + Fip ) Y,[p] 1_ Ripl/3 I CiP2/3
o2 1 2\ 1/3
g = vzl R,:i(ﬁ7r ) (11-2In2)a;, a=07
m v; 35w \ v

@ Benchmark on ab-initio pseudo-data = reproduction of PNM QMC calculations
@ Spread of data at higher density = YGLO (FP) and YGLO (Akmal)
@ LY expansion assumed to be valid also for SNM (FP and Akmal coincide)

3. -3,

p [fm~] plfm~]

. 0.008 0.068 0 0.005 004 0.135
T T i

—— YaLon

ok 4
g

0
la ke | |a,,kp.,,|
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Mapping with Skyrme and splitting parameter

@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)

B;
— V[l 2 . 8/3 - o(a+2) o] = !
Ey = Yillo™ + Dip™ ™ + Fipl®™, Vil = 1 s s
2nh2 vy — 1 6 [6m2\'/?
B =i, R,-:i( il ) (11-2In2)a;, a=07
m vi 357 v;
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Mapping with Skyrme and splitting parameter

@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)

B.
 Vilolo? b D gB/3 o Fplat2) ] — i
gY \/l[p]p +D:P +F:P ’ \/l[p] 1— Rip1/3+ Cip2/3
21i2 vy — 1 6 [6m2\/3
B =i, R,-:—( T ) (11-2In2)a;, a=07
m Vi 357 Vi

@ Mapping with Skyrme functional Esx = & + 3 + Eer (except for & + Yi)
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Mapping with Skyrme and splitting parameter

@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)

B.
 Vilolo? b D gB/3 o Fplat2) ] — i
gY \/l[p]p +D:P +F:P ’ \/l[p] 1— Rip1/3+ Cip2/3
21i2 vy — 1 6 [6m2\/3
B =i, R,-:—( T ) (11-2In2)a;, a=07
m Vi 357 Vi

@ Mapping with Skyrme functional Esx = & + 3 + Eer (except for & + Yi)
@ D; term may originate from different sources:

o momentum-dependent term Eq v
o extra density dependent term &'5y (with oy = 2/3)
o any combination of both
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Mapping with Skyrme and splitting parameter

@ Potential part of YGLO functional (a; = —18.9(—20.0) fm, i = S, N)

B.
Vil 4 D g8/3 1 Fuplat2) ] — i
Ey = Yl[p]p + Dip + Fip ) Y,[p] 1_ Ripl/3 n CiP2/3
21i2 vy — 1 6 [6m2\/3
B=""ViT ,  R=— (T (11-2In2)a;, a=07
m Vi 357 Vi

@ Mapping with Skyrme functional Esx = & + 3 + Eer (except for & + Yi)
@ D; term may originate from different sources:

o momentum-dependent term Eq v
o extra density dependent term &'5y (with oy = 2/3)
o any combination of both
@ Splitting parameter W =- weights the contribution of m* without modifying EoS

Eetty = WD;, &3y =01-W)D;
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Density-dependent scattering length and p-wave

@ ELYO: Density-dependent scattering length

o Tuned by low-density condition |as(kr)ke| =1

£, L
S - -ak) k=05
— k) k=1
3
(a)
a4 1 I 1
0 0.08 0.16 024

Density (fim”)
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Density-dependent scattering length and p-wave

@ ELYO: Density-dependent scattering length
@ Tuned by low-density condition |as(kr)ke| =1 i

@ Mapping with s-wave Skyrme-like EDF

Arh?
as(p)

m -3

14412
t3(l — x3) = T5m(37r2)1/3(11 —2In2)a2(p)

——--ak)k, =05 |
— k) k=1

i‘o(l — Xg) =

(a)

1 1 1
0.08 0.16 024
Density (fim”)

2mh?
m

t(l—xi) = Wy (a2(p)rs + 0.197a3(p))
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Density-dependent scattering length and p-wave

@ ELYO: Density-dependent scattering length
o Tuned by low-density condition |as(kr)ke| =1

@ Mapping with s-wave Skyrme-like EDF

Arh2 ] - -alk)k, =05
to(1— x0) = ———as(p) — -k~ 1
14412
t3(1 — x3) = ——5m(372)Y/3(11 — 21In2)a2(p) @ L
3 o 008 016 0240 05 10 L5 20
o 2 Density (fin”) K, (fn™)

h(l—x)=W (% (p)rs +0.19733(p)) P - SIyS = ELYO-s4p —
m L CGG v  ELYOs —

@ Including LY p-wave contributions
Amh?
m

t2(l —x2) = Wa ax(p)

ElEgg

[J. Bonnard, M. Grasso, D. Lacroix, PRC 101, 064319 (2020)]

lagkr
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Density-dependent scattering length and p-wave

@ ELYO: Density-dependent scattering length
o Tuned by low-density condition |as(kr)ke| =1

@ Mapping with s-wave Skyrme-like EDF

Arh2 ] - -alk)k, =05
to(1— x0) = ———as(p) — -k~ 1
14412
t3(1 — x3) = ——5m(372)Y/3(11 — 21In2)a2(p) @ L
3 o 008 016 0240 05 10 L5 20
o 2 Density (fin”) K, (fn™)

h(l—x)=W (% (p)rs +0.19733(p)) P - SIyS = ELYO-s4p —
m L CGG v  ELYOs —

@ Including LY p-wave contributions
Amh?
m

t2(l —x2) = Wa ax(p)

ElEgg

[J. Bonnard, M. Grasso, D. Lacroix, PRC 101, 064319 (2020)]
@ Applications: finite systems and stellar matter

lagkr
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Energy of neutron drops and effective mass

@ Application of YGLO and ELYO on finite systems = neutron drops
[J. Bonnard, M. Grasso, D. Lacroix, PRC 98, 034319 (2018); PRC 103, 039901(E) (2021)]

[S. Burrello, J. Bonnard, M. Grasso, PRC 103, 064317 (2021)]
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Energy of neutron drops and effective mass

@ Application of YGLO and ELYO on finite systems = neutron drops
[J. Bonnard, M. Grasso, D. Lacroix, PRC 98, 034319 (2018); PRC 103, 039901(E) (2021)]

[S. Burrello, J. Bonnard, M. Grasso, PRC 103, 064317 (2021)]

@ Adjustment on energy values of drops available from ab-initio calculations

1.00
0.95
0.90
ELYO
0.85

ab initio

E/ho NP

0.80
0.75
0.70
(b) hey =10 MeV
0.65
2 8 14 20 26 32 38 44 50

N
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y of neutron drops and effective mass

@ Application of YGLO and ELYO on finite systems = neutron drops
[J. Bonnard, M. Grasso, D. Lacroix, PRC 98, 034319 (2018); PRC 103, 039901(E) (2021)]

[S. Burrello, J. Bonnard, M. Grasso, PRC 103, 064317 (2021)]
@ Adjustment on energy values of drops available from ab-initio calculations

@ Bad agreement with ab-initio effective mass predictions

1.00 ‘ ‘
095 p ]
0.90
“ 038 J
T 085 E
< 080 E 6L - - ELYOsp ]
N — YGLOFP) S el
o SeeSLys SN e,
0.75 + Drischler et al. "
04 % Sehwenketal
0.70 . g/ambach?a{l,]
_ uraczynski et al.
0.65 O hp= 9MY 025"~ 0,06 0.05 0.12 0.13 0.18 021 0.24 027 03
2 8 14 20 26 32 38 4 50 ) ) ’ ) A ’ : : :
N p [fm™]
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y of neutron drops and effective mass

@ Application of YGLO and ELYO on finite systems = neutron drops
[J. Bonnard, M. Grasso, D. Lacroix, PRC 98, 034319 (2018); PRC 103, 039901(E) (2021)]

[S. Burrello, J. Bonnard, M. Grasso, PRC 103, 064317 (2021)]
@ Adjustment on energy values of drops available from ab-initio calculations

@ Bad agreement with ab-initio effective mass predictions
@ YGLO (s-wave) does not reproduce at once energy of drops and effective mass
= importance of p-wave contribution

[J. Bonnard, M. Grasso, D. Lacroix, Phys. Rev. C 101, 064319 (2020)]

1.00 T .
SlyS e
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0.90
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Exploring neutron dripline: isotopic chain

@ Hartree-Fock calculations with YGLO: reproduction of ground state properties

[S. Burrello, J. Bonnard, M. Grasso, Phys. Rev. C 103, 064317 (2021)]

—esis
ENN YGLO (P W= 0084) ]
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Exploring neutron dripline: isotopic chain

@ Hartree-Fock calculations with YGLO: reproduction of ground state properties

[S. Burrello, J. Bonnard, M. Grasso, Phys. Rev. C 103, 064317 (2021)]

2 ] =4
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Exploring neutron dripline: isotopic chain
@ Hartree-Fock calculations with YGLO: reproduction of ground state properties

[S. Burrello, J. Bonnard, M. Grasso, Phys. Rev. C 103, 064317 (2021)]

i E
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@ Correlation between tail of density profiles and symmetry energy slope at low-density
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NS modeling: neutron gas energy in inner crust

@ Crucial role of low-density constraints for pasta-phases formation in NS crust

[H. Dinh Thi, T. Carreau, A. F. Fantina, F. Gulminelli, A&A 654, A114 (2021)]
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NS modeling: neutron gas energy in inner crust

@ Crucial role of low-density constraints for pasta-phases formation in NS crust

[H. Dinh Thi, T. Carreau, A. F. Fantina, F. Gulminelli, A&A 654, A114 (2021)]

@ Homogeneous stellar matter (NMe) under $-equilibrium = gas in NS inner crust
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NS modeling: neutron gas energy in inner crust

@ Crucial role of low-density constraints for pasta-phases formation in NS crust

[H. Dinh Thi, T. Carreau, A. F. Fantina, F. Gulminelli, A&A 654, A114 (2021)]
@ Homogeneous stellar matter (NMe) under $-equilibrium = gas in NS inner crust

@ Lower energy of unbound component = modified equilibrium with clusters
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NS modeling: neutron gas energy in inner crust

@ Crucial role of low-density constraints for pasta-phases formation in NS crust

[H. Dinh Thi, T. Carreau, A. F. Fantina, F. Gulminelli, A&A 654, A114 (2021)]
@ Homogeneous stellar matter (NMe) under $-equilibrium = gas in NS inner crust
@ Lower energy of unbound component = modified equilibrium with clusters

@ Self-consistent implementation in NSE [s. Burrello et al., PRC 92, 055804 (2015)]
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Back-up slides

© Extended EDF-based models: recent developments and results

© Bridging ab-initio with phenomenological EDF approaches

o Power counting analysis based on many-body perturbative expansion
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Second order EoS with Skyrme interaction

@ Calculations based on (zero-range) Skyrme interaction revealed very successfull

o It may exist an EFT-like expansion based on contact-type terms
o MF results may represent the leading order (LO) of such expansion
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Second order EoS with Skyrme interaction

@ Calculations based on (zero-range) Skyrme interaction revealed very successfull

o It may exist an EFT-like expansion based on contact-type terms
o MF results may represent the leading order (LO) of such expansion

@ Standard Skyrme interaction, without gradient, spin—orbit and tensor parts
@ Minimal to get saturation in EoS of symmetric nuclear matter (SNM)

1
VLO = l'o(l —+ X()Pg) + gt3(1 +X3P0)Pa
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Second order EoS with Skyrme interaction

@ Calculations based on (zero-range) Skyrme interaction revealed very successfull

o It may exist an EFT-like expansion based on contact-type terms
o MF results may represent the leading order (LO) of such expansion

@ Standard Skyrme interaction, without gradient, spin—orbit and tensor parts

o Minimal to get saturation in EoS of symmetric nuclear matter (SNM)

1
VLO = l'o(l —+ X(]Pa-) -+ 61’3(1 +X3P0)Pa

@ Analytical derivation of 2" order contribution to EoS with Skyrme

[C. J. Yang, M. Grasso, X. Roca-Maza, G. Colé and K. Moghrabi, Phys. Rev. C94 (3), 034311 (2016)]
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Second order EoS with Skyrme interaction

@ Calculations based on (zero-range) Skyrme interaction revealed very successfull

o It may exist an EFT-like expansion based on contact-type terms
o MF results may represent the leading order (LO) of such expansion

@ Standard Skyrme interaction, without gradient, spin—orbit and tensor parts

o Minimal to get saturation in EoS of symmetric nuclear matter (SNM)

1
VLO = l'o(l —+ X(]Pa-) -+ 61’3(1 +X3P0)Pa

@ Analytical derivation of 2" order contribution to EoS with Skyrme

[C. J. Yang, M. Grasso, X. Roca-Maza, G. Colé and K. Moghrabi, Phys. Rev. C94 (3), 034311 (2016)]

K K, K,
&8
a q

g 1 Q aks [ dio [ d | < kika|V([K;k) > |2
T aeee ) ) g —a -
1 2 1—€ T
2,.(')2 k+q k-
,1 =q+ki /2 =q+k2 Eg/) = l ,,,,2,,,
’ ’ ! 2m’ q

@ Zero-range interaction (ultraviolet divergency) = cut-off (A) regularization
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BMF renormalizability with Skyrme interaction

@ EoSs at LO for SNM and pure neutron matter (PNM)

ESLO) 3 hk2 nkE hkEP3e 2 \*t3

s _ 2 TE L 2, T, Ta=(:15) =
A 10 m 472 472 372 6
LO 3+3

Epnn 3 k., . hk;’_lmt (1 —xa) + hkF’"aﬁ(l_x)
N 10 m 1272 ° 0 1272 2a 3

Clustering and two-body correlations in EDF-based models



Short-range correlations within relativistic approaches

BMF renormalizability with Skyrme interaction

@ EoSs at next-to-LO (NLO) for SNM and neutron matter (PNM)

J 2 2

Eluw _ 3 KE | nkE AR B (ke) | Equy g(ke M) - (&)
A 10 m = 4q2 ° 472 A A 3
NLO 343 (2) (2)

Ebnn) _ 3 TkE., ﬁk?—,nt 1)+ hkgt e Tg(l 4 EX) s (ke n) . (ke
N 10 m 1272 © 0 127 > N N
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BMF renormalizability with Skyrme interaction

@ EoSs at next-to-LO (NLO) for SNM and neutron matter (PNM)

J 2
Edun ) _ 3 hkg | hkE A kg3 A4 Egm ¢ (kF) N hkETeo oo (i)a t3
A 10 m | 4x2 07 T gpz 3 A a2 0 27 \32) 6
NLO 343 (2) 3+6¢
EI(’NM) _ ihkfz",n hkfg—i,n 21— x0) + hkg!s” E(l VI Eppm, ¢ (kF,n) n kg’ c
N 10 m 1272 © 0 1272 2o 3 N 1272

@ Renormalizability for SNM by constraining interaction parameters
[C. J. Yang, M. Grasso, K. Moghrabi and U. Van Kolck, PRC 95, 054325 (2017)]
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BMF renormalizability with Skyrme interaction

@ EoSs at next-to-LO (NLO) for SNM and neutron matter (PNM)

NLO (2) a
ESan ) _ 3 hkE | hid oy TRy Eswweke) | mkgrer (i)a t
A 10 m @ 4n2 " 4xz 7 A 4r2z 3n2) 6
NLO 3+3 (2) 3+6¢
EI(’NM) _ ihkﬁ,n hkE A1) 4 hkga® TA( &)+ Epnm,e(kF.n) kg ®
N 10 m 1272 ° 0 12r 2 N 1272
@ Renormalizability for SNM by constraining interaction parameters
[C. J. Yang, M. Grasso, K. Moghrabi and U. Van Kolck, PRC 95, 054325 (2017)]
@ Renormalization group (RG) analysis ) O—Om‘"m
= introduction of counter terms (C,C¥)

[C.J. Yang, M. Grasso, D. Lacroix, PRC 96, 034318 (2017)]

w8 () OO
Vo VALo
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Perturbativity and power counting in EDF theories

@ Convergence of energy contributions

PNM
@ Rate depends on power of kr T 100
ol 200F
Sco.os -300
<

[S]
=3
S

o 100
< 0
. 150 L
a0 ) < 100 20 ® 2<
‘u 9] o 50 10~ 7UJU
oo o m [ ]
e 0 0f— ]
4 < 150 4 150F B
a2 5 " 100H®) = 100} (h) E
0 0 m s0[ - 50 =
0 0.1 0.2 0.3 04 0 0.1 0.2 N 0.3 0.4 ()0 01 0.2 03 L 0.4 00 0‘ 0‘2 03 164
p(fm’s) o (im?) A (f, _3) . . .1 (f. _3) . X
. . . p (fm p (fm
@ Regularization of A-divergencies
EP (kg)
= I — /\—> 0 [S. Burrello, C.J. Yang, M. Grasso, PLB 811, 13593 (2020)]
— 00

@ 2" order finite part progressively suppressed = perturbative problem
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Perturbativity and power counting in EDF theories

@ Convergence of energy contributions

PNM
@ Rate depends on power of kr T 100
ol 200F
Sco.os -300
<

[S]
=3
S

o 100
< 0
. 150 L
a0 ) < 100 20 ® 2<
‘u 9] o 50 10~ 7UJU
oo o m [ ]
e 0 0f— ]
4 < 150 4 150F B
a2 5 " 100H®) = 100} (h) E
0 0 m s0[ - 50 =
0 0.1 0.2 0.3 04 0 0.1 0.2 N 0.3 0.4 ()0 01 0.2 03 L 0.4 00 0‘ 0‘2 03 164
p(fm’s) o (im?) A (f, _3) . . .1 (f. _3) . X
. . . p (fm p (fm
@ Regularization of A-divergencies
EP (kg)
= I — /\—> 0 [S. Burrello, C.J. Yang, M. Grasso, PLB 811, 13593 (2020)]
— 00

@ 2" order finite part progressively suppressed = perturbative problem
@ Expansion parameter and uncertainties analysis = Next-to-NLO (NNLO)

@ First application to finite nuclei [C.J. Yang, W.G. Jiang, S. Burrello, M. Grasso, arXiv:2110.0195]
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Short-range correlations within relativistic approaches

Quasi-deuterons as surrogate for SRCs in GRDF

@ Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation

o Embedded in GRDF model through in-medium modifications of Am{*")
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Quasi-deuterons as surrogate for SRCs in GRDF

@ Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
o Embedded in GRDF model through in-medium modifications of Am{*")

@ Two-body correlations in np 3S; channel = quasi-deuteron
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Quasi-deuterons as surrogate for SRCs in GRDF

@ Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
o Embedded in GRDF model through in-medium modifications of Am{*")

@ Two-body correlations in np 3S; channel = quasi-deuteron

@ T =0 = boson condensate of deuterons under chemical potentials equilibrium

Hd = tn + tp
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Quasi-deuterons as surrogate for SRCs in GRDF

@ Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
o Embedded in GRDF model through in-medium modifications of Amf,high)

@ Two-body correlations in np 3S; channel = quasi-deuteron

@ T =0 = boson condensate of deuterons under chemical potentials equilibrium

o Withscalar (S;), vector (Vi) and rearrangement (V;, W,.(')) potentials (i = nuc, d)
pa = pn - pp = |y AmE) £ V=K 4 () 4+ Vi KR ()" Y,

mi = mj — S,' S,' = X,'A,'ang V, = X,'A,' (Cwnw + Cpnp)

i

1
Vi=Vi+ W+ w® Wi = 3 (CLn2 + G — Con?)

oAmtish) 2(np) dc;
wo =p, 220 e c =2 P —
! nd Onj J m? T dny’ I=awp

J
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Quasi-deuterons as surrogate for SRCs in GRDF

@ Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
o Embedded in GRDF model through in-medium modifications of Amf,high)

@ Two-body correlations in np 3S; channel = quasi-deuteron

@ T =0 = boson condensate of deuterons under chemical potentials equilibrium

o Withscalar (S;), vector (Vi) and rearrangement (V;, W,.(')) potentials (i = nuc, d)
pa = pn - pp = |y AmE) £ V=K 4 () 4+ Vi KR ()" Y,

mi = mj — S,' S,' = X,'A,'ang V, = X,'A,' (Cwnw + Cpnp)

i

, 1

Vi=Vi+ W+ w® W,-:E(c;niJrc;,g_c;ng)
(high) 2

aArnd C: = r.l (nb) C/ _ dC.J

Oon; J mj? T dny’

VV,-(’):"d

j=ow,p

Mpuc

@ mie>0=0< Xy <min {X§max),1—|ﬁ|}, X{max) — 0

=&
XdConp ny—oo
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Quasi-deuterons as surrogate for SRCs in GRDF

@ Effective resonances (quasi-clusters) for treatment of SRCs at supra-saturation
o Embedded in GRDF model through in-medium modifications of Amf,high)

@ Two-body correlations in np 3S; channel = quasi-deuteron

@ T =0 = boson condensate of deuterons under chemical potentials equilibrium

o Withscalar (S;), vector (Vi) and rearrangement (V;, W,.(')) potentials (i = nuc, d)
pa = pn - pp = |y AmE) £ V=K 4 () 4+ Vi KR ()" Y,

mi = mj — S,' S,' = X,'A,'ang V, = X,'A,' (Cwnw + Cpnp)

i

, 1

Vi=Vi+ W+ w® W,-:E(c;niJrc;,g_c;ng)
(high) 2

aArnd C: = r.l (nb) C/ _ dC.J

Oon; J mJ? T dny’

VV,-(’):"d

j=ow,p

Mpuc

@ mie>0=0< Xy <min {X§max),1—|ﬁ|}, X{max) — 0

=— ——
Xd Conp np—roo
@ Crucial role of scaling factor x4 = x for bound nucleon-meson coupling strenght
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-deuterons mass-shift at high-density

@ Scaling factor for deuteron-meson coupling strenght
e x = 1 = same strength as for free nucleons
e x < 1= in-medium effects and description of chemical equilibrium constant
[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]

120( 12 T T T
_Xd=0'0
= 1000 4 = 1000 |- X, =02
(2] 2 c—em Xy=05
= =) —- X, =08
= 800 5 = 8001 ;=0
=) g P =
3 .z 3
£ 600 .z ] 2 sk
= =
2 2
g 4001 4 2 400F
£ g
= =
§ 2001 B g 2000
g g
= o =l 0 =
SNM x=1 SNM x=1Nn2
A R e L

20000102 03 04 05 06 07 08 09 1 : 0.1 02 03 04 05 06 07 08 09 I

baryon number density n, [fm™] baryon number density n, [fm'z]
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-deuterons mass-shift at high-density

@ Scaling factor for deuteron-meson coupling strenght
e x = 1 = same strength as for free nucleons
e x < 1= in-medium effects and description of chemical equilibrium constant
[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
@ 1/v/2 < xs = (0.8540.05) universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
o No crossing = Amy(np, Xy) invertible function for any density n,

B
5]
>

>
8

g

g

4001

.
3

w
8
8

T

w

8

deuteron mass shift Am,1 [MeV]
deuteron mass shift Amd [MeV]

<

SNM x=1
| I | I I I I I 1 ! I I I ! I I
01 02 03 04 05 06 07 08 09 1 h 01 02 03 04 05 06 07

baryon number density n, [fm"‘]

-201

L I
08 09 1

baryon number density n, [fm'z]
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-deuterons mass-shift at high-density
@ Scaling factor for deuteron-meson coupling strenght
e x = 1 = same strength as for free nucleons
e x < 1= in-medium effects and description of chemical equilibrium constant
[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
@ 1/v/2 < xs = (0.8540.05) universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
o No crossing = Amy(np, Xy) invertible function for any density n,

120 12 T

= 1000 g = 1000
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= 600F 5 ~n‘f’3 = 600
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2 2

g 4001 1 g 400
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& 2
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iS] accil < 0
SNM x=1
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baryon number density n, [fm"‘] baryon number density n, [fm'z]
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-deuterons mass-shift at high-density
@ Scaling factor for deuteron-meson coupling strenght
e x =1 = same strength as for free nucleons
e x < 1= in-medium effects and description of chemical equilibrium constant
[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
@ 1/v/2 < xs = (0.8540.05) universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
o No crossing = Amg(np, Xq) invertible function for any density np

° Am&high) < AmSRPY = Large change beyond Mott density for extended GRDF
[S. Typel, EPJ Special Topics 229, 3433—-3444 (2020)]]

120 ————— Lo00E
% 1000 B %
2 2
= 500 | -
£ o2 £ 100p
< s
&£ 600 L.z —p23 =
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Z L 4 E
E 400 g
= g 10
% 200+ B 5
g - :
o O °
SNM x=1
20 T L L
01 02 03 04 05 06 07 10.8 0.9 1 X 3
baryon number density n, [fm] baryon number density n, [fm "]
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-deuterons mass-shift at high-density
@ Scaling factor for deuteron-meson coupling strenght
e x =1 = same strength as for free nucleons
e x < 1= in-medium effects and description of chemical equilibrium constant
[L. Qin et al., PRL 108, 172701 (2012); R. Bougault et al., J. Phys. G 47, 025103 (2020)]
@ 1/v/2 < xs = (0.8540.05) universal scaling factor [H. Pais et al., PRC 97, 045805 (2018)]
o No crossing = Amg(np, Xq) invertible function for any density np
° Am&high) < AmSRPY = Large change beyond Mott density for extended GRDF
[S. Typel, EPJ Special Topics 229, 3433-3444 (2020)]]

@ Interpolation of low-(Pauli blocking) and high-(condensate model) density limit

120 ————— Lo00E
% 1000 B %
2 2
= 500 | -
£ o2 £ 100p
< s
&£ 600 L.z —p23 =
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E 400 g
= g 10
% 200+ B 5
g - :
o O °
SNM x=1
20 T L L
01 02 03 04 05 06 07 10.8 0.9 1 X 3
baryon number density n, [fm] baryon number density n, [fm "]
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Piecewise interpolation and saturation constraints

@ Piecewise parameterization: Amd(nb,Xd) = min {Am lOW)(n ), Amy (high) (nb,Xd)}

X Amg(np) no smooth function

X X‘Shlgh) = const. —— 0

np— o0

deuteron mass shift Amg [MeV]

baryon number density n, [fm’a]
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Piecewise interpolation and saturation constraints

@ Piecewise parameterization: Amy(np, Xg) = min {Am lOW)(n ), Amy (high) (nb,Xd)}

400f SNMJ X Amg(np) no smooth function
> .
% 300F X Xt(,hlgh) = const. —— 0
< nb—>oo
& 20f- v’ Zero-density limit (one half 2H binding)
§ DD2
é 100 Xd(mgm 00l
L, I
% == X" =05
%_,00, em X" 208
x=1 e X, high) _ 1

I I I I I I I I I
01 02 03 04 05 06 07 08 09 1

baryon number density ny [fmrl]
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Piecewise interpolation and saturation constraints

@ Piecewise parameterization: Amy(np, Xg) = min {Am lOW)(n ), Amy (high) (nb,Xd)}

SNMJ X Amg(np) no smooth function

X Xz(,high) = const. —— 0

nb—>oo
v’ Zero-density limit (one half 2H binding)
@ Overbinding at np = Re-fit of I'; o

200~

energy per nucleon E/ A [MeV]

DD2
100 Xd(hlgh) 0.0|7]
—— d(hleh) 02
0 == x, "= 05|
Sl
x=1 | X, 10

I I I I I I I I I
01 02 03 04 05 06 07 08 09 1

baryon number density ny [fmrl]
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Piecewise interpolation and saturation constraints

@ Piecewise parameterization: Amy(np, Xg) = min {Am lOW)(n ), Amy (high) (nb,Xd)}

N

2

=)
T

X Amg(np) no smooth function

X X(hlgh) = const. —— 0

nb—>oo
v’ Zero-density limit (one half 2H binding)
o @ Overbinding at np = Re-fit of I'; o

w

=]

S
T

IS}
=3
3

energy per nucleon E/ A [MeV]

100 TR
___X“m,gh, .|| @ Constraints on NM at saturation (no)
O e - Xf’““" 05[] (E/A, mj., pressure, symmetry energy)
(high)
1001 - thhmh»_o.g’
x=1 | X, =10
0‘.1 0[2 0‘.3 0‘.4 U‘.S 0‘.6 0‘.7 0‘.8 0‘.9 1
baryon number density ny [fmrl]
X ro‘,O rw,O rp,O
1 10.580042 13.217226  3.556424
1/\5 10.919963 13.719324  3.400187
DD2 — 10.686681  13.342362  3.626940
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Piecewise interpolation and saturation constraints

@ Piecewise parameterization: Amy(np, Xg) = min {Am lOW)(n ), Amy (high) (nb,Xd)}

X Amg(np) no smooth function

N

2

=)
T

X X(hlgh) = const. —— 0

nb—>oo
v’ Zero-density limit (one half 2H binding)
@ Overbinding at np = Re-fit of I'; o

w

=]

S
T

IS}
=3
3

energy per nucleon E/ A [MeV]

100 - gl?rfgm oo
___X“m,eh, .|| @ Constraints on NM at saturation (no)
O - Xf’““" 057 (E/A, mj., pressure, symmetry energy)
. high) _ . . . .
oop thh:gh»_OS’ @ Experimental results of SRCs in nuclei
x=1 X, =10
07 02 03 04 05 06 07 08 09 1 = Xa,0 = 0.2 (pairs = 20% of density)
baryon number density ny [fmrl]
dAmy 3
X Moo Fw.0 Moo Amgo [Mev] 57 ‘ [MeV fm3]
no
1 10.5680042 13.217226  3.556424 104.92 813.98
1/\/§ 10.919963  13.719324  3.400187 58.23 570.80
DD2 — 10.686681  13.342362  3.626940 — —
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Deuteron mass-shift parametrization

@ Unified mass-shift parameterization [S. Burrello, S. Typel, EPJA 58, 120 (2022)]
Amy(x) = x + cx" 1 [1 — tanh (x)] + fx tanh (gx), x="b
1+ bx no
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Deuteron mass-shift parametrization: y = 1/1/2

@ Unified mass-shift parameterization (v = 1) [s. Burrello, S. Typel, EPJA 58, 120 (2022)]

ax n
Amy(x) = + ex™ 1 [1 — tanh (x)] + 7 tanh (gx), x= -2
1+ bx no
4000 T T T
——DD2-1dl

= — - DD2-7d2
I ... DD2-xd3
= 3000- J
=
3
=
E 2000 % 4
g
g
=
S 10001 4
2
=
3 )

0 x=1N2 |

0 05 1 5 P 23 3

baryon number density n, [fm’z]
a b c n f g

DD2 - xd1  541.726060 243.472387 99.677247 1.656159 181.113975 0.18
DD2 - xd2  541.726060 243.472387 70.476986 1.230947 181.113975 0.22
DD2 - xd3  541.726060 243.472387 41.777908 0.257252 181.113975 0.26
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Deuteron mass-shift parametrization: y = 1/1/2

@ Unified mass-shift parameterization (v = 1) [s. Burrello, S. Typel, EPJA 58, 120 (2022)]

ax n
Amy(x) = + cx"1[1 — tanh (x)] + fx tanh (gx), x=-2
1+ bx no
4000 ; ; ; 1 . \
oo e — o ]
--- DD2-yd3 5 <08F ]

w
S
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S

T
I

0.7 B

20001 &2 -

1000~ -
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L

L L 1 1 ik 1
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baryon number density n, [fm'S]

baryon number density n, [fm"z]

a b c n f g

DD2 - xd1  541.726060 243.472387 99.677247 1.656159 181.113975 0.18
DD2 - xd2  541.726060 243.472387 70.476986 1.230947 181.113975 0.22
DD2 - xd3  541.726060 243.472387 41.777908 0.257252 181.113975 0.26
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Deuteron mass-shift parametrization: y = 1/1/2

@ Unified mass-shift parameterization (v = 1) [s. Burrello, S. Typel, EPJA 58, 120 (2022)]

ax np
Amy(x) = + cx"1[1 — tanh (x)] + fx tanh (gx), x=—
1+ bx no
4000 . ‘ : 1 . : ‘
—DD2-dl ool —B=00] ]
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= 30001 i o o
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baryon number density n, [fm ]

baryon number density n, [fm"z]

a b c n f g

DD2 - xd1  541.726060 243.472387 99.677247 1.656159 181.113975 0.18
DD2 - xd2  541.726060 243.472387 70.476986 1.230947 181.113975 0.22
DD2 - xd3  541.726060 243.472387 41.777908 0.257252 181.113975 0.26
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approaches

Deuteron mass-shift parametrization: y =1

@ Unified mass-shift parameterization (7 = 2/3) [S. Burrello, S. Typel, EPJA 58, 120

(2022)]

Amy(x) = x + cx" 1 [1 — tanh (x)] + fx tanh (gx), x="b
1+ bx no
so0l T T T T T 1 T T :
- : 09 g
z -+ DD2-d3 i B
2 | o8l ! 8
& g 07p | g
< g !
= 2061 / g
£ oA
4 ] ks .. b
= g
g 1 2 o3f J
2 oKy - B
=l Eeeiidic e il
Il Il Il Il Il Il Il Il x\= 17 o1r SNM . -
0 01 0203 04 05 06 07 08 09 1 001 02 03 04 05 06 07 05 09
baryon number density n, [fm”] baryon number density n, [fm™]
a b c n f g
DD2 - dl  541.726060 243.472387  —83.230901  3.491787 214.368137 0.65
DD2 - d2  541.726060 243.472387  —98.923123  3.200967 214.368137 0.67632
DD2 - d3  541.726060 243.472387 —140.309501 2.715545  214.368137 0.75
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SNM: impact on EoS and matter incompressibility

@ Attraction in presence of quasi-deuterons <= attraction/repulsion for I';-refit

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]
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SNM: impact on EoS and matter incompressibility

@ Attraction in presence of quasi-deuterons <= attraction/repulsion for I';-refit
[S. Burrello, S. Typel, EPJA 58, 120 (2022)]
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SNM: impact on EoS and matter incompressibility

@ Attraction in presence of quasi-deuterons <> attraction/repulsion for I';-refit

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]
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Effect on symmetry energy and its slope

[S. Burrello S. Typel, EPJA 58 120 (2022)]
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Effect on symmetry energy and its slope

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]
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Effect on symmetry energy and its slope

[S. Burrello, S. Typel, EPJA 58, 120 (2022)] 350
T T T T T
— DD2 —
— DD2-d3 Jny) =E‘ () — E‘ () z
150k [— DD2 - %d1 Alg=y Alg—¢ 2
I~ —— DD2-yd2 5 250
o ... DD2-yd3
= 2200
=}
':‘ =
& 100 g &l
5 2
- S
5 z
9 D
=} g 5
50+ B
50 L L L L L
o 0 0.5 1 1.5 22 3
0.5 1 1.5 2 2.5 3 baryon number density ny [fm™]

baryon number density n, [fmrz]

Clustering and two-body correlations in EDF-based models



Short-range correlations within relativistic approaches

Effect on symmetry energy and its slope

[S. Burrello, S. Typel, EPJA 58, 120 (2022)]
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Short-range correlations within relativistic approaches

Coupling between IS and IV modes

@ Symmetric nuclear matter: IS and IV modes are decoupled

@ Neutron-rich systems: n and p oscillate with different amplitudes = coupling
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Coupling between IS and IV modes

@ Symmetric nuclear matter: IS and IV modes are decoupled

@ Neutron-rich systems: n and p oscillate with different amplitudes = coupling
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Coupling between IS and IV modes

@ Symmetric nuclear matter: IS and IV modes are decoupled

@ Neutron-rich systems: n and p oscillate with different amplitudes = coupling
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Short-range correlations within relativistic approaches

Influence of the effective interaction
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Influence of the effective interaction
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Influence of the effective interaction

@ SAMi-J interactions — S
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@ Role of symmetry energy slope:
e IV PDR

Clustering and two-body correlations in EDF-based models



Short-range correlations within relativistic approaches

Influence of the effective interaction

@ SAMi-J interactions
[X. Roca-Maza et al., PRC87, (2013)]
= isolate influence of IV channel
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@ Sensitivity of Eyv.gpr to Esym at crossing
@ Role of symmetry energy slope:

o IV PDR < neutron skin thickness
@ Agreement with Vlasov results

[Zheng, H. et al., PRC 94, (2016)]



Short-range correlations within relativistic approaches

Influence of the effective interaction

@ SAMi-J interactions
[X. Roca-Maza et al., PRC87, (2013)]

= isolate influence of IV channel
Eam(0) = C(0)I?

40 F——— ——] ”
| TDHF s—- SAMi-J27| ]| .
BsE A — SAMiJ31| | j TDHF v i
g, \| — - SAMiJ35| | g, Vs
‘ 1sH .

S, (B) [fm’/MeV]
3 6
S¢ (E) [10° fm*/MeV]

Clustering and two-body correlations in EDF-based models



Short-range correlations within relativistic approaches

Comparison between Vlasov and TDHF model
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@ Good reproduction of IV GDR and IS GDR
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Comparison between Vlasov and TDHF model
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@ Good reproduction of IV GDR and IS GDR

@ Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
o PDR mode (outer surface)
e toroidal mode (inner surface against bulk)
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Comparison between Vlasov and TDHF model
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@ Good reproduction of IV GDR and IS GDR
@ Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
o PDR mode (outer surface)
e toroidal mode (inner surface against bulk)

10

@ Displacement of PDR peaks = numerical treatment of surface
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Link between nuclear response and density profiles
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@ Sharper evolution from bulk to surface region favor toroidal mode
Smoother density profile leads to robust PDR oscillations

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain
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Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827

[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]
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Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827

[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827
[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827
[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain
@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827

[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
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Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures

@ Question: which numerical parameters ensure the best agreement?
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Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
@ Question: which numerical parameters ensure the best agreement?

@ Dependence on box size (i.e. discretization of continuum single-particle states)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
@ Question: which numerical parameters ensure the best agreement?

@ Dependence on box size (i.e. discretization of continuum single-particle states)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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@ Very good agreement when the size is large enough (also for transition densities)
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