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Motivations

• Increasing experimental efforts to develop the 
technologies necessary to study the elastic proton 
scattering in inverse kinematics 

• Attempts to use such experiments to determine 
the matter distribution of nuclear systems at 
intermediate energies 

• Measurements are not free from sizeable uncertainties 

• The Glauber model is used to analyse the data 

• An essential step in the data analysis is the subtraction of 
contributions from the inelastic scattering

Develop a microscopic approach to make reliable 
predictions for elastic and inelastic scattering

[Sakaguchi, Zenihiro, PPNP 97 (2017) 1–52]

A.V. Dobrovolsky, G.A. Korolev, S. Tang et al. Nuclear Physics A 1008 (2021) 122154

Fig. 4. Total and core matter distributions ρ(r) of the nuclear density in 14C (a), 15C (b), 16C (c) and 17C (d) deduced 
in the analysis by using model density parameterizations SF (Symmetrized Fermi), GH (Gaussian-Halo), GG (Gaussian-
Gaussian), and GO (Gaussian-Oscillator), for details see the text. The shaded areas represent the envelopes of the density 
variation within the model parameterizations applied, superimposed by the statistical errors. All density distributions are 
normalized to the number of nucleons.

isotope all density parameterizations also fit the experimental data well. The weighted mean rms 
matter radius of 16C, deduced from the GH, SF, GG, and GO parameterizations is

Rm = (2.70 ± 0.06) fm.

For the core radius and the radius of the valence neutrons distribution, the following mean values 
were determined: Rc = 2.41(5) fm and Rv = 4.20(26) fm.

The deduced nuclear matter density distributions obtained using different parameterizations of 
the nuclear matter distributions are plotted in Fig. 4. The shaded areas represent the envelopes of 
the density variation within the model parameterizations applied, superimposed by the statistical 
errors. Fig. 4 also shows the obtained core matter distributions. All density distributions refer to 
point-nucleon distributions.

Using the matter radii Rm deduced in the present work and the radii Rp of proton distributions 
obtained in Refs. [49] and [9], the radii Rn of neutron distributions and thicknesses of the neutron 
skins δnp = Rn − Rp for the nuclei of the studied carbon isotopes were determined (see Table 2) 
with the help of expression (3):

Rn = [(AR2
m − ZR2

p)/N ]1/2. (3)
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Y. MATSUDA et al. PHYSICAL REVIEW C 87, 034614 (2013)

FIG. 4. Excitation-energy spectrum of 9C for recoil angles of less
than 79◦. The solid line corresponds to the elastic events tagged with
SF5. The dotted line corresponds to all the events not tagged. The
small gray area is the background events normalized by the number
of 9C beams. The dashed lines indicate the gate of ±7.5 MeV for the
elastic events.

The matrix elements of the instrumental response function
were calculated using the Monte Carlo simulation code
GEANT3 [20]. After solving Eq. (2), we obtained the cross
sections in the center-of-mass frame by dividing the cor-
responding solid angle in the center-of-mass frame into
σi . Lastly, we removed data points around the end of the
measured angular region since we do not know the influx
of recoil protons from the outside region. The obtained cross
sections are plotted in Fig. 5 and are listed in Table V in
the Appendix. The experimental error includes statistical and
systematic uncertainties in the number of beams, the number
of target protons, the number of recoil protons, and the detector
efficiencies. Of these, the statistical error of the recoil protons
accounted for most of the experimental error. Nuclear reaction
loss in the NaI(Tl) [21] was not considered in this analysis
because the reduction was much less than the statistical error.
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FIG. 5. Angular distribution of the differential cross sections for
the H(9C,p) reaction at 277–300 MeV/nucleon (closed circles). The
data for 12C are also plotted as a reference (open circles). The best-fit
calculation with the modified MH model and the two-parameter Fermi
distributions is shown by the solid line.

III. RESULTS AND DISCUSSION

The matter radius of 9C was deduced by fitting the present
angular distribution, which shows a smoother diffraction
pattern than that of 12C [22] as shown in Fig. 5 (open circles).
Section III A describes the reaction model, and the result is
given in Sec. III B.

A. Reaction model

We used and modified a model formulated by Murdock
and Horowitz (the MH model) [23]. The characteristics of
the MH model are that the effective NN scattering amplitude
is described by the simple direct plus exchange terms in the
framework of the RIA; the pseudovector coupling for the pseu-
doscalar meson instead of the pseudoscalar coupling restores
disagreement with phenomenological optical potentials at low
energies. In addition, the MH model can include medium
modification from Pauli blocking. However, we applied the
medium modification proposed in our previous work [3] to
take into account various nuclear many-body effects in terms
of the nuclear density. The modification of the effective NN
scattering amplitude from the original MH model, which arises
in the σ - and ω-meson exchange diagrams, is written as

g2
i , g

2
i → g2

i

1 + aiρB(r)/ρ0
,

g2
i

1 + aiρB(r)/ρ0
, (3a)

mi,mi → mi

(
1 + bi

ρB(r)
ρ0

)
, mi

(
1 + bi

ρB(r)
ρ0

)
,

i = σ,ω, (3b)

where g2
i are the coupling constants of the nucleon-meson

vertexes, mi are the masses of the propagators, and ρB(r)/ρ0 is
the baryon density divided by the normal density 0.1934 fm−3.
An overline indicates an imaginary part.

We determined the phenomenological coefficients
ai, ai, bi , and bi by the same procedure for the medium-heavy
stable nuclei [4,5]: the number of coefficients was reduced
to four (aσ = aσ , bσ = bσ , aω = aω, bω = bω), and they were
searched by means of the minimum chi-square method. The
chi-square is

χ2 =
N∑

j=1

[yj − y(θj ; ai, bi)]2

&y2
j

, (4)

where N is the number of data points, yj and &yj are the
j th experimental data and error, and y(θj ) is the calculated
cross section at an angle θj . In this analysis, we adopted the
scattering observables of the 12C(−→p ,p) reaction at 300 MeV to
be fitted because 12C is the nearby stable N = Z nucleus and
the charge density distribution was inferred by the electron
scattering precisely. Figure 6(a) shows the employed proton
vector and scalar density distributions, which are equal to the
employed neutron density distributions. The vector density
distribution ρV(r) was extracted by unfolding the sum-of-
Gaussians (SOG) charge density distribution [24] with the
intrinsic charge distributions of the proton and the neutron [25].
The SOG charge density distribution itself was used for the
Coulomb potential. On the other hand, we calculated the scalar

034614-4

[Matsuda et al., PRC 87, 034614 (2013)]



Optical potentials

Phenomenological Microscopic

Unfortunately, current used optical 
potentials for low-energy reactions 
are phenomenological and 
primarily constrained by elastic 
scattering data. 

Unreliable when extrapolated 
beyond their fitted range in energy 
and nuclei

Existing microscopic optical 
potentials can be developed in a 
low- (Feshbach theory) or high-
energy regime (Watson multiple 
scattering theory). 
Calculations are more difficult. 

No fit to experimental data



The first-order optical potential
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Møller factor

It imposes the Lorentz invariance of flux when we pass from the 
NA to the NN frame where the t matrices are evaluated
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Road map to the microscopic optical potential

NN Body

N+A Body

Effective Interaction
(Dynamic part of the OP)
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Theoretical framework - first order expansion
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Û(q,K;!) = Û c(q,K;!) +
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Scattering observables
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scattering plane, i.e. protons polarised 
along the +x axis have a finite 
probability of having the spin polarised 
along the ± z axis after the collision 
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Chiral interactions

Symmetry 2016, 8, 26 10 of 43
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Figure 1. Hierarchy of nuclear forces in chiral perturbation theory (ChPT). Solid lines represent
nucleons and dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds, and
stars denote vertices of index D = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are
created on an equal footing and emerge in increasing number as we go to higher and higher orders.
At NNLO, the first set of nonvanishing three-nucleon forces (3NF) occur [28,29], cf. column “3N Force”
of Figure 1. In fact, at the previous order, NLO, irreducible 3N graphs appear already, however, it has
been shown by Weinberg [14] that these diagrams all cancel. Since nonvanishing 3NF contributions
happen first at order (Q/Lc)3, they are very weak as compared to the 2NF which starts at (Q/Lc)0.

More 2PE is produced at n = 4, next-to-next-to-next-to-leading order (N3LO), of which we show
only a few symbolic diagrams in Figure 1. There is a large attractive one-loop 2PE contribution (the
bubble diagram with two large solid dots ⇠ c2

i ), which is slightly over-doing the intermediate-range
attraction of the 2NF. Two-loop 2PE graphs show up for the first time and so does three-pion exchange
(3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [30,31]. Most
importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due
to the increased number of contact terms, a quantitative description of the two-nucleon interaction up
to about 300 MeV lab. energy is possible, at N3LO [15,32]. Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading

We use these interactions as the only input 
to calculate the effective interaction between 

projectile and target and the target density

Advantages 

• QCD symmetries are consistently respected 
• Systematic expansion (order by order we know 

exactly the terms to be included) 
• Theoretical errors 
• Two- and three-nucleon forces belong to the same 

framework



• NN t matrix computed with the addition of a 
density-dependent interaction 

• Nuclear density computed with NN + 3N 
interaction

We employed both Machleidt and Epelbaum NN potentials at N3LO and N4LO order 

Included as 2body density 
dependent potentials
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Spin-saturated nuclei

MATTEO VORABBI, PAOLO FINELLI, AND CARLOTTA GIUSTI PHYSICAL REVIEW C 98, 064602 (2018)

not lead to sizable differences in the χ2/datum (see Table VIII
in Ref. [21]) and it is safe to perform calculations with only
two potentials. Because we want to explore elastic scattering
at energies around and above 200 MeV, we exclude the EKM
potentials with R = 1.1 and 1.2 fm and the EMN potential
with ! = 450 MeV. We are confident that for our present
purposes showing results with only a limited set of NN chiral
potentials will not affect our conclusions in any way.

B. Phenomenological potentials

One of the most recent and successful phenomenological
OPs was developed by Koning et al. [10]. As quoted in the
original paper, the authors provided a phenomenological OP
able to challenge the best microscopic approaches in terms of
predictive power.

The phenomenological OP Vopt for proton-nucleus scatter-
ing is usually defined as [10]

Vopt = −VV (r, E) − iWV (r, E) − iWD (r, E)

+VSO (r, E)l · s + iWSO (r, E)l · s + VC (r, E), (4)

where VV,SO and WV,D,SO are the real and imaginary com-
ponents of the volume-central (V ), surface-central (D), and
spin-orbit (SO) potentials, respectively, and E is the labo-
ratory energy of the incident particle. All the components
are separated in energy-dependent well depths and energy-
independent shape functions as V (r, E) ∼ Ṽ (E)f (r ) and
W (r, E) ∼ W̃ (E)f (r ), where the radial functions usually
resemble a Woods–Saxon shape (in the volume case) and the
radial derivative of a Woods–Saxon shape (in the other cases).
The Coulomb term VC is usually given by that of a uniformly
charge sphere.

The potential of Ref. [10] is a so-called “global” OP,
which means that the free adjustable parameters are fit for a
wide range of nuclei (24 ! A ! 249) and of incident energies
(1 keV ! E ! 200 MeV) with some parametric dependence
of the coefficients in terms of the target mass number A and
of the incident energy E. An alternative choice, not adopted
in Ref. [10], would be to produce an OP for each single target
nucleus. We refer the reader to Ref. [10] for more details.
Recently, an extension of the OP of Ref. [10] up to 1 GeV
has been proposed [11]. It is generally believed that above
∼180 MeV the Schrödinger picture of the phenomenological
OP should be taken over by a Dirac approach [42], but the
extension was done just with the aim to test at which energy
the validity of the predictions of the nonrelativistic OP fails.
We are aware that above 200 MeV an approach based on the
Dirac equation would probably be a more consistent choice,
but since we are interested in testing the limit of applicability
of our (nonrelativistic) microscopic OP we will use such an
extension to perform some benchmark calculations at center-
of-mass energies close to 300 MeV. All the calculations have
been performed by ECIS-06 [43] as a subroutine in the TALYS
software [42,44].

III. RESULTS

The aim of the present paper is to investigate and compare
the predictive power of our microscopic OP derived from the
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FIG. 1. Ratio of the differential cross section to the Rutherford
cross section as a function of the center-of-mass scattering angle
θ for elastic proton scattering off 16O. Calculations are performed
at E = 200 MeV (laboratory energy) with the microscopic OPs
derived from the EKM [17,19] (EKM, red band) and EMN [20,21]
(EMN, green band) NN chiral potentials at N4LO and with the
phenomenological global OP of Ref. [42] (KD, violet line). The
interpretation of the bands is explained in the text. Experimental data
are from Refs. [45,46].

EKM [17,19] and EMN [20,21] chiral potentials at N4LO and
of the phenomenological global OP KD derived by Koning
et al. [10,11] in comparison with available data of elastic
pA scattering. To this aim, in this section we present and
discuss the predictions of the different OPs for the differential
cross section dσ

d"
, presented as a ratio to the Rutherford cross

section, dσ
d"

/ dσ
d" Ruth, and analyzing power Ay of proton elastic

scattering over a wide range of nuclei and isotope chains,
from oxygen to lead, and for proton energies between 156 and
333 MeV, for which experimental data are available.

The energy range considered for our investigation was
chosen on the basis of the assumptions and approximations
adopted in the derivation of the theoretical OP. In particular,
the impulse approximation does not allow us to use our mi-
croscopic OP with enough confidence at much lower energies,
where we can expect that the phenomenological KD potential
is able to give a better agreement with the experimental data.
The upper energy limit is determined by the fact that the
EKM and EMN chiral potentials are able to describe NN
scattering observables up to 300 MeV [17,19–21]. The phe-
nomenological global KD potential was originally constructed
for energies up to 200 MeV [10] and it was then extended
up to 1 GeV [11]. It can therefore be interesting to test and
compare the validity of the predictions of both microscopic
and phenomenological OPs up to about 300 MeV.

In Ref. [9] we compared the results obtained with different
versions of EKM and EMN chiral potentials at N4LO for
the pp and pn Wolfenstein amplitudes and for the scattering
observables of elastic proton scattering off 12C, 16O, and
40Ca nuclei at an incident proton energy E = 200 MeV. For
the sake of comparison with our previous work, we show
in Fig. 1 the ratio of the differential cross section to the
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Figure 8. Di�erential Cross section for proton (or neutron?)
o� 40Ca at 201 MeV laboratory energy compared to experi-
mental data from Ref. []. All results exploit Gorkov-ADC2
densities computed from NNLOsat, while the curves di�er in
the use of the folding two-nucleon force which is eithe NNLOsat
(??? curve) or N4LO (??? curve).

Figure 9. Di�erential Cross section for proton (or neutron?)
o� 48Ca at 201 MeV laboratory energy compared to experi-
mental data from Ref. []. All results exploit Gorkov-ADC2
densities computed from NNLOsat, while the curves di�er in
the use of the folding two-nucleon force which is eithe NNLOsat
(??? curve) or N4LO (??? curve).
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Assessing the impact of the 3N interaction

• For all nuclei we found very small contributions to the 
differential cross section 

• The contributions to the spin observable are larger and they 
seem to improve the agreement with the data

Vorabbi et al., PRC 103, 024604 (2021)



Extension to non-zero spin targets

[Vorabbi et al., Phys. Rev. C 105, 014621 (2022)]



Extension to non-zero spin targets

[Vorabbi et al., Phys. Rev. C 105, 014621 (2022)]



Extension to antiproton-nucleus elastic scattering



Inclusion of double scattering

● Inclusion of the second-order term of the spectator expansion 

● Requires: 
1. Two-body density matrix (from NCSM) 

2. Solution of the three-body scattering equation for 
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[Crespo et al., PRC 46, 279 (1992)]
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First-order term of the spectator expansion 

Inclusion of medium effects 
• Work has been done to include these effects at a 

mean-field level 

• We have to rethink the approach and do it with the 
NCSM and/or SCGF

Inclusion of medium effects
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(A+1)-body propagator The problem is how to treat the 
Q operator! 
The simplest approximation is
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[Chinn et al., PRC 52, 1992 (1995)]

The first-order term is a 3-body problem

We have to include the interaction 
with the residual nucleus!



The inelastic transition amplitude 

Required potentials

Distorted wave theory of inelastic scattering
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[Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1215 (1982)]
[Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1233 (1982)]



The inelastic transition amplitude 
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Toward a coupled channel approach?

New projection operators 

Coupled-channel transition amplitude
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T = U + UGT
It leads to a set of coupled 

Lippmann-Schwinger equations
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Nucleus-nucleus collisions

130 CHAPTER 8. NUCLEUS-NUCLEUS OPTICAL POTENTIAL (ELASTIC SCATTERING)

HT |�Ti = ET |�Ti . (8.9)

Using the operators P and Q we can split Eq.(8.1) into two parts, i.e. an integral equation for T

T = U + UG0(E)PT , (8.10)

where U is the optical potential operator, and an integral equation for U

U = V + V G0(E)QU . (8.11)

With these definitions the transition operator for elastic scattering may be defined as Tel = PTP , in
which case Eq. (8.10) can be written as

Tel = PUP + PUPG0(E)Tel . (8.12)

Thus the transition operator for elastic scattering is given by a straightforward one-body integral equa-
tion, which requires, of course, the knowledge of the operator PUP . The following theoretical treatment
consists of a formulation of the many-body equation, Eq. (8.11), where expressions for U are derived
such that PUP can be calculated accurately without having to solve the complete many-body problem.
Here we only assume the presence of the two-body forces. With this assumption the external interaction
V can be written as

V =

APX

i=1

ATX

j=1

vij , (8.13)

where the indices i and j belong to the nucleons in the projectile and target, respectively, and the two-
body potential vij acts between the ith nucleon in the projectile and the jth nucleon in the target. In a
similar way, the operator U for the optical potential can be expressed as

U =

APX

i=1

ATX

j=1

Uij (8.14)

where Uij is given by

Uij = vij + vijG0(E)Q
APX

k=1

ATX

l=1

Ukl . (8.15)

Through the introduction of an operator ⌧ij which satisfies

⌧ij = vij + vijG0(E)Q⌧ij , (8.16)

we can rearrange Eq. (8.15) as

Uij = ⌧ij + ⌧ijG0(E)Q
APX

k 6=i

ATX

l 6=j

Ukl . (8.17)

This rearrangement process can be continued for all the AP projectile nucleons and AT target nucleons,
leading to a generalised version of the spectator expansion for the optical potential operator. Currently,
we are only interested in the first term of this series and thus we can approximate the expression for the
optical potential operator with its leading order as

U '

APX

i=1

ATX

j=1

⌧ij . (8.18)
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Summary & outlook

✓ The choice of the NN interaction is crucial to define the energy limits of  
applicability of the optical potential 

 ✓ The 3N interaction has a sizeable effect on polarisation observables 

 ✓ The extension to nonzero spin targets provides a good description of the data for 
stable and unstable nuclei 

✗ Extend the high- and low-energy limits of applicability of the optical potential 

✗ Inclusion of the second-order term of the spectator expansion 

✗ Consistent treatment of the full 3N interaction 

✗ Development of a coupled-channel approach 

✗ Evaluation of theoretical uncertainties



Long-term strategy: Ab-initio Nuclear Reactions

Elastic Nucleon-Nucleus scattering ✓

Inelastic Nucleon-Nucleus scattering ◁

Nucleus-Nucleus scattering ◁

Mass/Charge exchange scattering ✗

FRAGMENTATION

Non-zero spin targets

Three-body

Medium corrections

2nd order corrections
Numerical codes

Factorized

Full folding

R-matrix

Optimal approximation

Coupled channel

Extensions

(Work in progress)

(Work in progress)



Additional Project: Electroweak probes

Rn − Rp for 48Ca versus Rn − Rp for 208Pb is shown in
Fig. 5. A number of models including the microscopic
coupled cluster calculations [8] are consistent with our
results, slightly underpredicting 208Pb while slightly
overpredicting 48Ca. Dispersive optical model calculations
agree well for 208Pb but substantially overpredict Rn − Rp

for 48Ca [72].
In conclusion, we have reported a new and precise

measurement of the PVES asymmetry from 48Ca and a
model-independent extraction of the difference between the
charge form factor and the weak form factor Fch − FW at
q ¼ 0.8733 fm−1. In addition, we have extracted, with a
small model dependence, the weak skin RW − Rch and the
neutron skin Rn − Rp of 48Ca and compared it to that of
208Pb. The extracted neutron skin of 48Ca (CREX) is
relatively thin compared to the prediction of most models,
while that of 208Pb (PREX) is thick, yet both are consistent
with a number of density functional models and with the
microscopic coupled cluster models [8]. This will have
implications for future energy density functional calcula-
tions and the density dependence of the symmetry energy.
The small model dependence of this result could be

further constrained with a future measurement of APV from
48Ca at an additional Q2 [73]. Experimental techniques
from this Letter, including excellent systematic control of
helicity-correlated fluctuations and demonstration of
high precision electron beam polarimetry, will inform
the design of future projects MOLLER [74] and SoLID
[75] at JLab measuring fundamental electroweak cou-
plings, as well as P2 and the 208Pb radius experimental
proposals at Mainz [76].
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FIG. 5. 48Ca neutron minus proton radius versus that for 208Pb.
The PREX-2þ PREX-1 experimental result is shown as a blue
square, while that for CREX is shown as a red square with the
inner error bars indicating the experimental error and the outer
error bars including the model error. The gray circles (magenta
diamonds) show a variety of relativistic (nonrelativistic) density
functionals. Coupled cluster [8] and dispersive optical model
(DOM) predictions [72] are also shown.
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∼2 MeV below the elastic peak, thus, minimizing contri-
butions from inelastic scattering.
The polarized electron beam was generated using cir-

cularly polarized laser light incident on a photocathode
[62]. The beam polarization sign follows the handedness of
the laser circular polarization selected at 120 Hz using a
Pockels cell, creating 8.13 ms time windows of constant
beam helicity arranged in quartet patterns (þ − −þ or
−þþ−) to ensure cancellation of 60 Hz ac power pickup.
The sign of each quartet was selected pseudorandomly and
reported to the data acquisition system (DAQ) with a delay
to suppress electronic pickup.
Production data totaling 412 Coulombs were acquired

with a 150 μA beam rastered over a 4 mm2 area on
enriched 48Ca targets mounted on a cryogenically cooled
copper ladder. Two 1 g=cm2 targets, with atomic 48Ca
percent of 95.99" 0.02% and 91.70" 0.01% were used to
acquire 7.8% and 92.2% of the total data, respectively.
The PMT anode current from the ≈28 MHz scattered

flux in each detector was integrated and digitized over each
helicity window by high-precision 18-bit sampling analog-
to-digital convertors (ADCs). The PMT was bench tested
before and after the run using light sources mimicking the
integrated Cherenkov light response to determine linearity
under operating conditions. Linearity was cross-checked
throughout the run by monitoring detector output variation
with beam current. The independent asymmetry measure-
ments from each HRS were combined with equal weight;
the final data set comprised 87 M window quartets.
The beam intensity, energy, and trajectory at the target

were measured with beam monitors using the same
integrating data acquisition system. Three radio frequency
(rf) cavities measured the beam intensity, while six rf
antenna monitors (BPMs) measured beam position along
the beam line, including at dispersive locations with energy
sensitivity. The polarized source was tuned to minimize the
average helicity-correlated changes in beam parameters on
target [63]. Two techniques were used to reverse the beam
polarization relative to the voltage applied to the Pockels
cell. A half-wave plate (HWP) was inserted in the laser
beam path, separating the data sets into alternating reversal
states with a period of about ten hours. Additionally, the
full production data set was divided into three parts
characterized by a change in spin precession in the low
energy injector which reversed (or not) the polarization sign
on target relative to that at the polarized source. Averaging
over these reversals further suppressed spurious helicity-
correlated asymmetries in APV.
The helicity-correlated integrated beam charge asymme-

try was controlled using active feedback, and averaged to
−89 ppb over the run. Modulations of air-core magnets and
an accelerating rf cavity placed upstream of all BPMs were
used to calibrate detector sensitivities. This calibration was
crosschecked with a regression analysis based on intrinsic
beam fluctuations. The individual quartet measurements of

APV were corrected for beam intensity, trajectory, and
energy fluctuations; the helicity-correlated correction aver-
aged to 53" 5 ppb over the run. Consistency checks
demonstrated that the residual detector asymmetry fluctua-
tions were dominated by counting statistics.
Two polarimeters measured the longitudinal beam

polarization Pb upstream of the target. Operating contin-
uously through the run, the Compton polarimeter used a
calorimeter to measure the energy of photons scattered by
the electron beam traversing an optical cavity of circularly
polarized green laser light [64]. Calibration uncertainties
were minimized by integrating the calorimeter response for
each helicity window, thereby eliminating a low-energy
threshold. Another polarimeter that detected Møller-
scattered electrons from a polarized iron foil target in a
4 T magnetic field was deployed nine times periodically
during the run. The results were consistent between polari-
meters and combined to yield Pb ¼ 87.10" 0.39%.
Calibration data were collected at reduced beam current

(100 nA to 1 μA) to enable counting and tracking of
individual electrons. With Cherenkov detector PMT gains
increased to detect individual particle pulses in coincidence
with drift chamber tracks and trigger scintillators hits, the
reconstructed scattering angle and momentum were cali-
brated using scattered electrons from a thin carbon target
and a steel-walled water flow target, mounted on a separate,
water-cooled target ladder. The momentum recoil differ-
ence between elastic scattering from hydrogen and oxygen
in the water target calibrates the central angle to 0.02°
absolute accuracy.
Similar counting data collected with the production 48Ca

target were used to estimate the fractional contribution from
the first three low-lying excited states in 48Ca, which totaled
1.4% of the accepted rate. Calculation of the excited
state asymmetries and conservative uncertainties [31] lead
to the APV corrections listed in Table I. The 48Ca parity-
conserving transverse single-spin asymmetry AT was inde-
pendently measured [65] and, along with counting data,
used to estimate a 13 ppb uncertainty in the AT correction to
APV, due to potential residual transverse beam polarization
coupled to imperfect symmetry in the left-right and top-
bottom acceptance.
Using a theoretically computed APVð40CaÞ ¼ 2430"

30 ppb [31], the APV contribution from the assayed 7.95%
40Ca target fraction was calculated to be 19" 3 ppb.
Figure 1 shows APV measurements after all corrections
in roughly uniform periods, with the global average
APV ¼ 2668" 106 ppb.
To compare this result to a theoretical model, the

acceptance function ϵðθÞ provides the distribution of
scattering angles intercepting the Cherenkov detectors

hAi ¼
R
dθ sin θAðθÞ dσ

dΩ ϵðθÞR
dθ sin θ dσ

dΩ ϵðθÞ
; ð2Þ
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considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.
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We present the first ab initio calculations for open-shell nuclei past the tin isotopic line, focusing on Xe
isotopes as well as doubly magic Sn isotopes. We show that, even for moderately hard interactions, it is
possible to obtain meaningful predictions and that the NNLOsat chiral interaction predicts radii and charge
density distributions close to the experiment. We then make a new prediction for 100Sn. This paves the way
for ab initio studies of exotic charge density distributions at the limit of the present ab initio mass domain,
where experimental data is becoming available. The present study closes the gap between the largest
isotopes reachable by ab initio methods and the smallest exotic nuclei accessible to electron scattering
experiments.
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Introduction.—The charge density distribution of the
atomic nucleus offers a unique access to its internal
structure and the spatial distribution of the nucleons.
This distribution has been probed for decades using
electron scattering experiments off stable isotopes [1–3]
that have provided an impressive amount of accurate
experimental data. Unfortunately, measurements on nuclei
outside the valley of stability have been prevented by the
difficulties associated with preparing short-lived targets
despite the interest in studying exotic nuclei presenting
features like neutron halos, neutron skins, or proton
bubbles [4–8]. Such investigations have recently been
made possible with the construction of the self-confining
radioactive-isotope ion target (SCRIT) at RIKEN [9–11]
and will be explored as well in the next few years at the
Facility for Antiproton and Ion Research by the European
Learning and Intelligent Systems Excellence project [12].
By successfully using an electron storage ring as a trap for
the radioactive ions, the SCRIT experimenters have been
able to scatter electrons off 132Xe nuclei and recently
published their first results [11]. While other isotopes in
the A ∼ 130mass region will be studied over the next years,
experimental luminosities might prevent studying lighter
nuclei before future upgrades, limiting charge distribution
extraction from exotic nuclei to the heavy mass sector.
A flourishing of new or reimplemented formalisms

[13–25] associated with new numerical approaches
[26–28] have allowed ab initio methods to finally leave
the realm of light nuclei and access midmass isotopes up to
A ∼ 100 [29,30] over the past few decades. But all of those
approaches seem to have reached a new ceiling with the Sn

isotopic line. The limitations preventing them from reach-
ing higher masses are diverse—from interactions based on
chiral effective field theory overbinding midmass nuclei
[31,32] to numerical limitations linked to the size of the
basis and the matrix elements storage.
Recently, new interactions have been developed [33–37]

leading to an improvement in the reproduction of experi-
mental data for midmass nuclei. New frameworks have
been proposed for the treatment of both the Hamiltonian
and the many-body formalism [38–41], paving the way
toward larger model spaces and promising to extend the
reach of ab initiomethods within the next few years. While
a first qualitative reproduction of Sn closed-shell nuclei
ground-state energies had been obtained a few years
ago [29], the spectroscopy of the light end of the Sn
isotopic chain has only been investigated recently [30]
with an interaction able to reproduce experimental results
for heavier nuclei [33]. This raises the question of using
present day frameworks to extend the frontier of the
ab initio domain and compare results from calculations
to experimental charge distributions that will become
available at SCRIT. Investigating discrepancies between
ab initio theoretical predictions and experimental results
will allow one to put new constraints on the experiment,
inform our theoretical models, and open the way to the
study of heavy nuclei structure from first principles.
In this Letter, we use the self-consistent Green’s function

theory (SCGF) [13–15] with chiral effective field theory
Hamiltonians, present what are to our knowledge the first
ab initio calculations of charge radius, neutron skin, and
charge density distributions for 100Sn, 132Sn, 132Xe, 136Xe,
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FIG. 2. Combined fit results of APV(Pb)+PREX-II (dashed
orange and dark red contours) and APV(Pb)+PREX-
II+theory (solid cyan and blue contours, with their corre-
sponding best fits (orange square and cyan star, respectively),
shown in the sin2 ✓W vs �Rnp(

208Pb) plane at 1� and 3�
confidence levels. The side panels show the one-dimensional
marginalizations (red line for APV(Pb)+PREX-II, cyan line
for APV(Pb)+PREX-II+theory) for both the fits. The red
horizontal bar shows the PREX-II result [1] for s2 SM

W (blue
line).

The s2W best fit results in a value lower than the SM
predicted one, and with smaller uncertainty with respect
to the PREX-II+APV(Pb) combined fit result.

Main results and discussion.— The 1� confidence level
contours obtained by the three presented analysis are
summarized in Fig. 3 to underline how thinner skins are
allowed for lower values of s2W .
Focusing on the implications for s2W , in Fig. 4 we summa-
rize the state of the art of the weak mixing angle measure-
ments in the low-energy regime (Q . 200 MeV) through
processes involving electrons. The lowest energy deter-
mination belongs to APV(Cs), which is 1� lower than
the SM value [28]. The APV(Cs) value corresponds to
a neutron skin correction determined from an extrapo-
lation of neutron skin measurements from antiprotonic
data [7, 43, 56, 57], which is compatible with the EDF
estimate on cesium. Let us note that the APV(Cs) re-
sult is currently debated in the community. The theoret-
ical calculations have gone through many reevaluations,
leading to di↵erent weak mixing angle determinations.
For completeness, see the work presented in Ref. [58]
and the recent calculation performed in Ref. [59]. At
higher energies (Q ⇡ 160 MeV), the combined Qweak [60]
and the E158 [61] measurements precisely determine s2W
to be compatible with the SM prediction. The orange
square and the light blue star points are the results ob-

tained in this work for the combined PREX-II+APV(Pb)
fit, see Eq. 11, and the PREX-II+APV(Pb)+theory fit,
see Eq. 13, respectively. The horizontal error bars indi-
cate that we assume s2W to remain constant between the
APV(Pb) and PREX-II experimental energy scales.

FIG. 3. Summary of the PREX-only (grey long dashed),
combined (orange dashed) and combined+theory (cyan solid)
1� confidence level contours in the sin2 ✓W vs �Rnp(

208Pb)
plane. The orange square and the cyan star points are the
best fits of combined and combined+theory, respectively. The
green vertical band shows �Rth

np, while the red dot the PREX-
II result [1] for s2 SM

W (blue line).

Since PREX-II and APV(Pb) are not so precise in
measuring the weak mixing angle, future determinations
at the same energy scale are awaited. In particular, the
P2 [62, 63] and the MOLLER [64] experiments are going
to measure s2W with high precision at energies slightly
smaller than the PREX-II one.
The s2W dependence on the energy scale is fundamental
in our discussion. In fact, the presence of beyond the
SM light particles could significantly modify the running
of s2W only at low-energies. The green dashed curve in
Fig. 4 shows an example of a dark Z boson [68, 69] of
mass around 50 MeV as discussed in Ref. [67]. It shows
that s2W can sensibly di↵er from the SM at low energies
while remaining compatible for Q & 150 MeV, so that
Qweak and PREX-II could be measuring di↵erent s2W
values.
The PREX twin experiment on calcium, CREX [70–72],
is performed at Q ⇡ 170 MeV, so near the Qweak energy
scale. In this regime, the value of s2W is rather precisely
measured to be close to s2 SM

W , thus, if our interpretation
is correct, CREX is expected to measure a thin calcium
neutron skin, compatible with the prediction of coupled
cluster calculations, �Rcc

np(
48Ca) = 0.12-0.15 fm [73].

Conclusions.— In summary, we confirm the PREX-II
neutron skin measurement via an independent analysis
at fixed weak mixing angle. Questioning the assumptions
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The only available electroweak measurement of the 208Pb neutron skin !Rnp, performed by the PREX-II
Collaboration through polarized electron-lead scattering, shows a mild tension with respect to both the theoretical
nuclear-model predictions and a host of measurements. However, the dependence on the weak mixing angle
should be incorporated in the calculation, since its low-energy value is experimentally poorly known. We first
repeat the PREX-II analysis confirming their measurement by fixing the weak mixing angle to its standard
model value. Then, we show the explicit dependence of the PREX-II measurement on the weak mixing angle,
obtaining that it is fully degenerate with the neutron skin. To break this degeneracy, we exploit the weak mixing
angle measurement from atomic parity violation on lead, obtaining a slightly thinner neutron skin but with
about doubled uncertainties, possibly easing the PREX tension. Relying on the theoretical prediction, !Rth

np ≈
0.13–0.19 fm, and using it as a prior in the fit, we find a weak mixing angle value about 1.2σ smaller than
the standard model prediction. Thus, we suggest a possible solution of the PREX-II tension by showing that,
considering its underlying dependence on the weak mixing angle, the PREX-II neutron skin determination could
be in agreement with the other available measurements and predictions if the weak mixing angle at the proper
energy scale is smaller than the standard model prediction.
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I. INTRODUCTION

The neutron skin !Rnp ≡ Rn − Rp of a nucleus quantifies
the difference between the neutron and the proton nuclear
distribution radii, Rn and Rp, respectively. Polarized electron-
nucleus scattering happens through both the weak and the
electromagnetic currents, therefore it provides an interesting
way to assess the nuclear structure. Indeed, it is possible
to isolate the weak-interaction contribution, which strongly
depends on the neutron nuclear density, from the electro-
magnetic one, which mainly probes the already highly tested
proton nuclear density.

Recently, the PREX-II Collaboration released their new
measurement of the lead neutron skin through polar-
ized electron-lead scattering, namely !RPREX−II

np (208Pb) =
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0.278 ± 0.078 fm [1], after a previous less precise measure-
ment, !RPREX−I

np (208Pb) = 0.30 ± 0.18 fm [2,3]. The combi-
nation of these results leads to !RPREX,comb

np (208Pb) = 0.283 ±
0.071 fm [1] indicating a preference for relatively large values
of the skin. In particular, our analysis is focused on the PREX-
II measurement, which is significantly more precise.

The PREX-II measurement is in tension with the other
available determinations, such as those coming from electric-
dipole polarizability [4–6], antiprotonic atoms [7–9], proton-
nucleus scattering [10,11], coherent pion photoproduction
[12], and the indirect measurements of neutron-star ob-
servables [13–24]. All these nonelectroweak measurements
are in fair agreement with each other, being also com-
patible with the predictions of different energy density
functional (EDF) nuclear models [4–6], !Rtheor

np (208Pb) =
0.13–0.19 fm, and the first ab initio estimate of the lead neu-
tron skin, !Rab−initio

np (208Pb) = 0.14–0.20 fm [25]. Although
the hadronic probes have been shown to be affected by un-
controlled theoretical uncertainties [26], and the astrophysical
constraints are rather indirect, the global picture that emerges
indicates a preference for a thinner lead neutron skin with
respect to PREX, which, however, is considered to be model
independent being a nonhadronic probe. So far, no solution to
such a dilemma has been found, even if a reasonable compro-
mise seems to be allowed for a specific set of quantified EDFs
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