Achievements and future perspectives in microscopic optical potentials

Paolo Finelli

University of Bologna and INFN

MONSTRE Meeting May 11, 2023

Motivations

- Increasing experimental efforts to develop the technologies necessary to study the elastic proton scattering in inverse kinematics
- Attempts to use such experiments to determine the matter distribution of nuclear systems at intermediate energies

[Sakaguchi, Zenihiro, PPNP 97 (2017) 1–52]

- Measurements are not free from sizeable uncertainties ullet
- The Glauber model is used to analyse the data
- An essential step in the data analysis is the subtraction of contributions from the inelastic scattering

Develop a microscopic approach to make reliable predictions for elastic and inelastic scattering

[Dobrovolsky et al., NPA 1008 (2021) 122154]

Optical potentials

Phenomenological

Unfortunately, current used optical potentials for low-energy reactions are phenomenological and primarily constrained by elastic scattering data.

Unreliable when extrapolated beyond their fitted range in energy and nuclei

Existing microscopic optical potentials can be developed in a low- (Feshbach theory) or highenergy regime (Watson multiple scattering theory). Calculations are more difficult.

$$V(r) = -V_R f_R(r) - iW_V f_V(r)$$

+ $4a_{VD} V_D \frac{d}{dr} f_{VD}(r) + 4ia_{WD} \frac{d}{dr} f_{WD}(r)$
+ $\frac{\lambda_\pi^2}{r} \left[V_{SO} \frac{d}{dr} f_{VSO}(r) + iW_{SO} \frac{d}{dr} f_{WSO}(r) \right] \vec{\sigma} \cdot \vec{l}$

Microscopic

No fit to experimental data

The first-order optical potential

The first-order optical potential

$$U_{\mathbf{p}}(\boldsymbol{q}, \boldsymbol{K}) = \sum_{N=p,n} \int d\boldsymbol{P} \, \eta(\boldsymbol{q}, \boldsymbol{K})$$

Nonlocal one-body density......

- Computationally expensive
- •Obtained from the No-Core Shell Model
- Calculation performed with **NN** and **3N** interaction

The first-order optical potential

Nonlocal one-body density.....

- Computationally expensive
- •Obtained from the No-Core Shell Model
- Calculation performed with **NN** and **3N** interaction

Road map to the microscopic optical potential

Theoretical framework - first order expansion

Møller factor $\left[\frac{E_{\text{proj}}(\boldsymbol{\kappa}') E_{\text{proj}}(-\boldsymbol{\kappa}') E_{\text{proj}}(\boldsymbol{\kappa}) E_{\text{proj}}(-\boldsymbol{\kappa})}{E_{\text{proj}}(\boldsymbol{k}') E_{\text{proj}}\left(-\frac{\boldsymbol{q}}{2}-\frac{\boldsymbol{K}}{A}\right) E_{\text{proj}}(\boldsymbol{k}) E_{\text{proj}}\left(\frac{\boldsymbol{q}}{2}-\frac{\boldsymbol{K}}{A}\right)}\right]^{\frac{1}{2}}$

Kerman, McManus and Thaler, Ann. Phys. 8 (1959) 551 and many others

$$egin{aligned} &(A-1)\left< m{k}', \Phi_A | t(\omega) | m{k}, \Phi_A
ight> \ &-m{k}, & m{K} \equiv rac{1}{2}(m{k}'+m{k}) \end{aligned}$$

$$\begin{split} \hat{U}(\boldsymbol{q},\boldsymbol{K};\omega) = & \hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) + \frac{i}{2}\boldsymbol{\sigma}\cdot\boldsymbol{q}\times\boldsymbol{K}\hat{U}^{ls}(\boldsymbol{q}, \boldsymbol{k};\omega) \\ & \hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) = \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K}) \\ & \text{Central component} \\ & \times \sum_{N=n,p} t_{pN}^{c} \left[\boldsymbol{q},\frac{A+1}{A}\boldsymbol{K};\omega\right] \end{split}$$

Theoretical framework - first order expansion

 $\left[\frac{E_{\text{proj}}(\boldsymbol{\kappa}') E_{\text{proj}}(-\boldsymbol{\kappa}') E_{\text{proj}}(\boldsymbol{\kappa}) E_{\text{proj}}(-\boldsymbol{\kappa})}{E_{\text{proj}}(\boldsymbol{k}') E_{\text{proj}}\left(-\frac{\boldsymbol{q}}{2}-\frac{\boldsymbol{K}}{A}\right) E_{\text{proj}}(\boldsymbol{k}) E_{\text{proj}}\left(\frac{\boldsymbol{q}}{2}-\frac{\boldsymbol{K}}{A}\right)}\right]^{\frac{1}{2}}$

Kerman, McManus and Thaler, Ann. Phys. 8 (1959) 551 and many others

$$\begin{split} & (A-1) \left\langle \boldsymbol{k}', \Phi_{A} | t(\omega) | \boldsymbol{k}, \Phi_{A} \right\rangle \\ & \boldsymbol{k}, \qquad \boldsymbol{K} \equiv \frac{1}{2} (\boldsymbol{k}' + \boldsymbol{k}) \\ & \hat{U}(\boldsymbol{q}, \boldsymbol{K}; \omega) = \hat{U}^{c}(\boldsymbol{q}, \boldsymbol{K}; \omega) + \frac{i}{2} \boldsymbol{\sigma} \cdot \boldsymbol{q} \times \boldsymbol{K} \hat{U}^{ls}(\boldsymbol{q}, \boldsymbol{k}) \\ & \hat{U}^{c}(\boldsymbol{q}, \boldsymbol{K}; \omega) = \frac{A-1}{A} \eta(\boldsymbol{q}, \boldsymbol{K}) \\ & \text{Central component} \qquad \times \sum_{N=n,p} t_{pN}^{c} \left[\boldsymbol{q}, \frac{A+1}{A} \boldsymbol{K}; \omega \right] \\ & (\boldsymbol{q}) \\ & \hat{U}^{ls}(\boldsymbol{q}, \boldsymbol{K}; \omega) = \frac{A-1}{A} \eta(\boldsymbol{q}, \boldsymbol{K}) \left(\frac{A+1}{2A} \right) \\ & \text{Spin-orbit component} \\ & \times \sum_{N=n,p} t_{pN}^{ls} \left[\boldsymbol{q}, \frac{A+1}{A} \boldsymbol{K}; \omega \right] \end{split}$$

Theoretical framework - first order expansion

$$(\theta, \theta) = A(k_0, \theta) + \boldsymbol{\sigma} \cdot \hat{N} \underbrace{C(k_0, \theta)}_{A(\theta)}$$
 Spin-flip amplitude
 $A(\theta) = \frac{1}{2\pi^2} \sum_{L=0}^{\infty} \left[(L+1)F_L^+(k_0) + LF_L^-(k_0) \right] P_L(\cos \theta)$

$$\frac{d\sigma}{d\Omega}(\theta) = |A(\theta)|^2 + |C(\theta)|^2$$

Spin rotation $Q(\theta) = \frac{2 \text{Im}[A(\theta) C^*(\theta)]}{|A(\theta)|^2 + |C(\theta)|^2}$

Rotation of the spin vector in the scattering plane, i.e. protons polarised along the +x axis have a finite probability of having the spin polarised along the **±***z* axis after the collision

Analyzing power

Chiral interactions

Advantages

- QCD symmetries are consistently respected
- Systematic expansion (order by order we know exactly the terms to be included)
- Theoretical errors
- Two- and three-nucleon forces belong to the same framework

We use these interactions as the **only** input to calculate the **effective interaction** between projectile and target and the **target density**

2N Force

3N Force

NLO $(Q/\Lambda_\chi)^2$

NNLO $(Q/\Lambda_{\chi})^3$

 ${f N^3 LO} (Q/\Lambda_\chi)^4$

 ${f N^4 LO}\ (Q/\Lambda_\chi)^5$

Chiral interactions

• NN t matrix computed with the addition of a density-dependent interaction

• Nuclear density computed with NN + 3N interaction

We employed both Machleidt and Epelbaum NN potentials at N3LO and N4LO order

Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011) 1-75 Modern Theory of Nuclear Forces, Rev. Mod. Phys. 81 (2009) 1773-1825

Spin-saturated nuclei

Assessing the impact of the 3N interaction

- For all nuclei we found very small contributions to the differential cross section
- The contributions to the spin observable are larger and they seem to improve the agreement with the data

Extension to non-zero spin targets

[Vorabbi et al., Phys. Rev. C 105, 014621 (2022)]

Extension to non-zero spin targets

[Vorabbi et al., Phys. Rev. C 105, 014621 (2022)]

Extension to antiproton-nucleus elastic scattering

PHYSICAL REVIEW LETTERS 124, 162501 (2020)

Inclusion of double scattering

Inclusion of the second-order term of the spectator expansion

[Crespo *et al.*, PRC **46**, 279 (1992)]

$$U^{(2)} = \sum_{i=1}^{A} \tau_{0i} + \sum_{i,j\neq i}^{A}$$

- Requires:
 - 1. Two-body density matrix (from NCSM)

$$ho({m r}_1',{m r}_2',{m r}_1,{m r}_2)$$

2. Solution of the three-body scattering equation for τ_{0ij}

 τ_{0ij}

Inclusion of medium effects

<u>First-order term of the spectator expansion</u>

Inclusion of medium effects

[Chinn *et al.*, PRC **52**, 1992 (1995)]

Distorted wave theory of inelastic scattering

The inelastic transition amplitude

$$T_{\text{inel}}(\boldsymbol{k}_*, \boldsymbol{k}_0) = \int d\boldsymbol{r}' \int d\boldsymbol{r} \, \psi^{\dagger}(\boldsymbol{k}_*, \boldsymbol{r}') U_{\text{tr}}(\boldsymbol{r}', \boldsymbol{r}) \, \psi(\boldsymbol{k}_0, \boldsymbol{r})$$

<u>Required potentials</u>

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

[Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1215 (1982)] [Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1233 (1982)]

Distorted wave theory of inelastic scattering

[Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1215 (1982)] [Picklesimer, Tandy, Thaler, Phys. Rev. C 25, 1233 (1982)]

$$dm{r}\,\psi^\dagger(m{k}_*,m{r}')m{U}_{
m tr}(m{r}',m{r})\,\psi(m{k}_0,m{r})$$

Toward a coupled channel approach?

<u>New projection operators</u>

- $P \equiv P_0 + P_1 + \ldots = |\Psi_0\rangle \langle \Psi_0| + |\Psi_1\rangle \langle \Psi_1| + \ldots$
 - $T_{00} \equiv P_0 T P_0, \quad T_{01} \equiv P_0 T P_1 \dots$

<u>Coupled-channel transition amplitude</u> T = U + UGT

It leads to a set of coupled **Lippmann-Schwinger equations**

Inputs

 $U_{00}, U_{01}, U_{10}, U_{11}, \ldots$

Optical potential

Nucleus-nucleus collisions

Summary & outlook

- ✓ The choice of the NN interaction is crucial to define the energy limits of applicability of the optical potential
- ✓ The 3N interaction has a sizeable effect on polarisation observables
- ✓ The extension to nonzero spin targets provides a good description of the data for stable and unstable nuclei
- X Extend the high- and low-energy limits of applicability of the optical potential
 X Inclusion of the second-order term of the spectator expansion
 X Consistent treatment of the full 3N interaction
 X Development of a coupled-channel approach
 X Evaluation of theoretical uncertainties

Long-term strategy: Ab-initio Nuclear Reactions

Elastic Nucleon-Nucleus scattering ✓

Numerical codes

Factorized

Full folding

R-matrix

Optimal approximation

Coupled channel

Inelastic Nucleon-Nucleus scattering <a>(Work in progress)

Nucleus-Nucleus scattering <
 (Work in progress)

Mass/Charge exchange scattering X

FRAGMENTATION

Additional Project: Electroweak probes

PHYSICAL REVIEW LETTERS 125, 182501 (2020)

Ab Initio Computation of Charge Densities for Sn and Xe Isotopes

P. Arthuis^(D),^{1,*} C. Barbieri^(D),^{1,2,3,†} M. Vorabbi^(D),^{4,‡} and P. Finelli^(D),^{5,§}

FIG. 3. Luminosity multiplied by the differential cross section for ¹³²Xe obtained from Gorkov SCGF calculations at ADC(2). The values for the $NN + 3N(\ln l)$ interaction have been scaled by 10^2 for clarity. The gray bands correspond to the two-point Fermi distribution with parameter and error bars extracted from Ref. [10]. Experimental values are taken from [10] and duplicated with a scaling of 10^2 for comparison with $NN + 3N(\ln l)$ values, where error bars have been removed for clarity.

New available code for elastic (PV) electron scattering

- Test with existing codes (ELSEPA,...)
- Extension to the inelastic case
- Standard Model test

II result [1] for $s_W^{2 \text{ SM}}$ (blue line).

Beam-normal single spin asymmetry

PHYSICAL REVIEW C 105, 055503 (2022)

Incorporating the weak mixing angle dependence to reconcile the neutron skin measurement on ²⁰⁸Pb by PREX-II

M. Atzori Corona[®],^{1,2} M. Cadeddu[®],^{2,*} N. Cargioli[®],^{1,2,†} P. Finelli[®],³ and M. Vorabbi[®]

PREX-

^{2 SM}=0.23857

0.2 0.3 0.4 0.5 $\Delta R_{\rm np}$ [fm] FIG. 3. Summary of the PREX-only (grey long dashed), combined (orange dashed) and combined+theory (cyan solid) 1σ confidence level contours in the $\sin^2 \theta_W$ vs $\Delta R_{np}(^{208}\text{Pb})$ plane. The orange square and the cyan star points are the best fits of combined and combined+theory, respectively. The green vertical band shows ΔR_{np}^{th} , while the red dot the PREX-

