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Two main lines of action in the development of Quantum Monte Carlo algorithms:

* Projection methods defined in the space of Slater determinants (Configuration Interaction
Monte Carlo, CIMC). This is particularly useful for nuclear structure problems, since it is not
limited to Hamiltonians expressed in the coordinate basis (Roggero, Barbieri)

e Variational methods using neural networks to approximate the many-body wavefunction of
the system (“Neural wavefunctions”). This method provides very accurate predictions for
the observables in a variational context (= no sign problem) (Lovato)

A couple remarks...

* Quantum Monte Carlo methods have now reached a certain level of maturity. However,
there is still room for improvements and extensions of the method.

* QMC provides a very useful mind frame for those who want to get into quantum
computing.



Originally the idea was to develop ana algorithm working in “momentum space” for non-local
Hamiltonians.

The wavefunction of an interacting many-fermion system can be expanded on a basis of Slater
determinants |®;)built for instance from the orbitals coming from an Hartree-Fock calculation:

[TFCh = " Ci|;)

Usually, the wavefunction is optimized by computing’the matrix elements A 3nd
diagonalizing. Eigenvalues and eigenvectors provide the spectrum and the ex%ﬁs%n@éﬁﬁ@f s of the

corresponding wavefunctions. Diagonalization (see e.g. the NCSM method) is expensive and currently
limited to
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Replace diagonalization with a capable to give the overlaps of the ground
state wavefunction with the chosen basis encoded, for instance, in terms of occupation numbers or

momentum. In general this works very well ih@ggcond qguantization.

Alessandro Roggero, Abhishek Mukherjee, and Francesco Pederiva, Phys. Rev. B 88, 115138 (2013)



Projection methods are based on imaginary time propagation. Defining the (non unitary) propagatorP as:

P = exp {—(FI — Eo)ét}
where £, is an estimate of the ground state energy, we have:

lim PY|U) = |T,)
N —o0
Where| Vo) is the ground state of the Hamiltonian. If 0t is small one can expand the propagator obtaining:

P|W) = [(1 - (H — Eo)dt]|P)

If we expand on the basis | P;) truncated to M states, the expression can be recast as:

(®;W(t 4 01)) = (@;|P[V(1)) = Z<¢j\7’|¢z‘><®¢!¢(t)> ~ Z@j\[(l — (H — Eo)3t]®;)(@;| ¥ (1))

As in standard QMC method the sum over the M states can approximated by a sum over a number M,, of
“walkers” in the space of the Slater determinants. The probability of jumping from one state to the next is

given by the matrix element of the propagator in the r.h.s. of the equation above.



CONFIGURATION INTERACTION MONTE CARLO

As in standard QMC method the sum over the M states can approximated by a sum over a number M,, of
“walkers” in the space of the Slater determinants. The probability of jumping from one state to the next is

given by:

s (RPIZ)  _ (25[P[P:)
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Beware that this definition is valid iff the matrix elements of the propagator are positive! This sets a strong
constraint on the maximum propagation time, which must be less than 2/(E,,,-E;), where E,,,, is the
highest eigenvalue of H in the model space considered. The denominator g(j) becomes a “weight” that
reflects the change in normalization during the propagation.

To this elementary scheme we have added two ingredients:

* Importance sampling to guide the walkers
* Exponential propagator



RECENT PROGRESS

A set of calculations was originally performed on the electron gas (and a few other Coulombic systems) and
neutron matter with an N2LO chiral interaction, but without 3NF.

A few years ago, Carlo Barbieri and Pierre Arthuis proposed to work on the extension of the formalism to
interactions containing 3NF. These are necessary to address the problem of nuclear matter, but also to
discuss correctly nuclides far away from the stability valley and close to the drip line.
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Dropping the last
term introduces a
small truncation error.




RECENT PROGRESS

The algorithm was tested on Pure Neutron Matter with a N2LO chiral interaction in the NO2BA

Pierre Arthuis, Carlo Barbieri, FP, and Alessandro Roggero, Phys. Rev. C 107, 044303 (2023)
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CIMC gives access to a number of other observables that are quite difficult to compute when using the standard
approach in coordinate systems. One of them is for example the momentum distribution. Since we are working
essentially expanding the wavefunction in terms of determinants of plane waves, it is sufficient in order to
evaluate the momentum distribution to create a

. Results are obviously very clean.
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RECENT PROGRESS

A bit less straightforward is the computation of the static structure factor S(g), which is defined as:

S(g) = / " S (g,w) = (Wolp(q) p(q)| o)

where:

Z| q)[Wo)|* §(En — Eo —w)

In a CIMC calculation S(g) needs to be computed as a mixed estimator S;(q)

Z]\LT wg(l,T ®:|S(q)|Di)
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The operator to be averaged needs in turn to be computed as a sum of a diagonal and off-diagonal parts:

Si(@) = (DilS(@)| D) + > <‘I’G|Dnzégngl§<q>|0l>
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RECENT PROGRESS

Static structure factor
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_ N Corrections for finite size effects (mostly shell effects)
S(q) for 66 neutrons at different densities need to be included. This is done with an analysis

with and without the inclusion of 3NF based on the comparison with the Fermi gas results.



Neural networks (NN), as universal approximants, can be used to implement highly correlated many-body
wavefunctions that are then optimized by optimizing the NN parameters.

Recently this method was combined with CIMC in simple models in order to explore the potential benefits. A first
application was made to the study of a simple pairing model with an Hamiltonian:
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We also considered a Richardson-Gaudin model:

H = ZdN 292 \/a— oz—dq)A;Aq

p,q=1

(Important for comparison)



In this case we perform a simple variational calculation to estimate:

_ (WvI|H[Yy)
v = (Yv[v)

as a function of the parameters in the wavefunction. The latter is represented in terms of occupation number
states:

Probability to be sampled

(N) Wwhere p/(N)= <]ZTJ‘VI|{¢M\£‘>/> is the local energy.

The variatioinal ansatz is a so-called neural wave function:
Yy (N) = (N]py) = M) tanh(V(N))

where #/(N)and V(N)are fully connected neural networks (FCNNs).

The model space is given in terms of the number P of levels that can be occupied by the M pairs of Fermions.
The states [N) are then given by P bits, M of which have value 1 and P-M have value 0.



NEURAL WAVEFUNCTIONS

Mauro Rigo, Benjamin Hall, Morten Hjorth-Jensen, Alessandro Lovato, and FP, Phys. Rev. E 107, 025310 (2023)
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NEURAL WAVEFUNCTIONS
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Extension of the CIMC to the case of symmetric nuclear matter. Recent calculations show that the situation
is a bit more under control than it was just a few years ago. However, it is still worth checking the results
coming from chiral forces in the non-local formulation.

Computation of other observables, also in nuclei. In particular there is a proposal by Carlo Barbieri to use
this formalism to compute optical potentials (a PRIN was also submitted on the subject)

Use of neural wave functions in configuration space for more realistic interactions (effective chiral or
phenomenological). This somewhat simplifies the computation of generic observables

Extension of the use of NWF in coordinates for strange systems. We recently started a collaboration with
A. Drago and A. Di Donna (a master student in Ferrara) for the study of light hypernuclei. This opens the
way to the pursuing a few ideas concerning the properties of supersaturated matter (for astrophysical
applications)



