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- Nambu covariant formalism for improving Gorkov SCGF 
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- Grouding DFT into ab initio. 
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Extension beyond few-nucleons thanks to: 

• Soft (nearly perturbative) effective nuclear forces 

• Diagrammatic many-body approaches

• 283 stable isotopes 
• ≈3,000 are known 
• ≈7,000 predicted to exist
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Wave Function-Based Methods

Early years

Open challenges: 

• Accuracy (better theory of nuclear forces) 

• Mass number limit (optimised model spaces) 

• Precision & scattering (high-order diag. resummations)

Legnaro Natl’ Lab, Mid Term Plan 2022



All Ladders (GT) and ring modes (GW) are coupled 
to all orders. Two approaches: 

• Faddev-RPA allows for RPA modes 

• ADC(3) Tamn-Dancoff version using 3rd order 
diagrams as ‘seeds’: 

The Faddev-RPA and ADC(3) methods in a few words

n p

“Extended” 
Hartree-Fock

Σ★(ω) = R(2p1h) R(2h1p)

F-RPA:  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. A83, 042517 (2011) 

ADC(3): 
Lect. Notes in Phys 936 (2017)- 
Chapter 11.

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy. 
Both ladders and rings are needed for atomi nuclei:
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Explicit expressions for effective 1B and 2N interaction
operators are

Ũ =
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αβ

Ũαβ a†
αaβ , (13)
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where, in the averaging of 2NFs and 3NFs, one- and two-
body reduced density matrices of the many-body system are
produced,

ρδγ =
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δη,γ ε(t − t+). (17)

The two-body density of Eq. (17) is obtained when the
opportune limits are taken in the time arguments of the 2B
Green’s function in Eq. (2).

We note that when the irreducible self-energy is computed
with the effective Hamiltonian of Eq. (12), a portion of the
many-body effects is incorporated in the interactions, which
become system dependent. This is done in a systematic way
and the procedure is in principle superior to the usual normal
ordering approach. Here the density matrices ρ and ( entering
the contraction of the interaction vertex are obtained from the
true correlated propagators; i.e., they are not computed from
the reference state.

The separation of a simple unperturbed Hamiltonian Ĥ0
from Eq. (11) is instrumental to any approach based on
perturbation theory (or on all-orders resummations): it allows
us to define a reference state upon which a perturbative series
is constructed and it also leads to the expansion of the Green’s
function in Feynman diagrams. Nevertheless, the auxiliary
potential Û eventually cancels from the SCGF formalism.
Considering the decomposition of Eq. (9), the irreducible
static self-energy *∞

αβ is given exactly by the 1B effective
interaction [22]:

*∞
αβ = Ũαβ . (18)

Since Û is added to the definition of the reference propagator
g(0) but subtracted in Eq. (14), it eventually cancels out exactly
from the Dyson equation [see Eq. (28)]. The dynamic self-
energy *̃αβ(ω) can still depend on the auxiliary potential
through the perturbative expansion in g

(0)
αβ (ω). However, in

the full self-consistent approach, the perturbative series is
restricted to skeleton diagrams where fully correlated propaga-
tors gαβ(ω) replace the uncorrelated ones. Thus, the partition
of the Hamiltonian into a uncorrelated part and residual part
is completely lost in the exact SCGF formalism and one may
think of the correlated propagator as playing the role of an
improved reference state.

(a) (b)

FIG. 1. One-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at second order in the
expansion of Eq. (9), using the effective Hamiltonian of Eq. (12).
The wiggly lines represent the 2N effective interaction of Eq. (15),
while the long-dashed lines represent the interaction-irreducible
3NF Ŵ .

For the irreducible self-energy, all one-particle irreducible,
skeleton and interaction-irreducible diagrams up to third order
have been derived in Ref. [22]. Within the skeleton expansion,
i.e., when single-particle propagators are correlated, the irre-
ducible self-energy up to the third order is given by the exact
static part, Eq. (18), the two second-order diagrams of Fig. 1,
and the 17 third-order diagrams of Figs. 2 and 6. In this case,
the energy-dependent part of the self-energy contains only
effective 2NFs and irreducible 3NFs as interaction insertions.
Note that because of Eq. (15), the contribution of Fig. 1(a)
actually corresponds to four separate diagrams if expressed
in terms of the bare Hamiltonian Eq. (10), of which three are
interaction reducible [22]. Likewise, many more reducible di-
agrams would appear at third order. Without propagator renor-
malization, when one considers the diagrammatic expansion
with reference propagators g

(0)
αβ (ω) as internal fermionic lines,

other diagrams with different topologies must be included
to take into account explicitly additional correlations in both
the static and dynamic part of the self-energy. These terms
contain also nonskeleton diagrams that include Ũ and are
presented in Appendix C.

In Fig. 1 we show the only two one-particle irreducible,
skeleton, and interaction-irreducible diagrams at second order.
These diagrams imply different sets of intermediate state

(a) (b)

(c)

FIG. 2. As described in the caption of Fig. 1 but for the third-order
diagrams with only 2p1h and 2h1p intermediate state configurations.
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The Self-Consistent Green’s Function with Faddev-RPA

Wrings

Tladders

Dyson 
Eq.W W

T

Optical potential

spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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68Ni:

considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with

 O  O  O  O  O  O  O  O
-180

-160

-140

-120

-100

-80

-60

Dys-ADC(3), NN+3N(ind)

Dys-ADC(3), NN+3N(full)

Gkv-2nd, NN+3N(full)

Exp

14 16 18 20 22 24 26 28

E
g.

s.
 [

M
eV

]

ω=24 MeV

SRG=2.0 fm-1

Dys-ADC(3),  NN+3N(full)

Dys-ADC(3),  NN+3N(ind)

Gorkov-2nd,   NN+3N(full)
Exp

FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].
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3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0
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5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
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calculations tends to adjust the results toward experiment,
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with the settings used in Ref. [28], i.e., at the experimental
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ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
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mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
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We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
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of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
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while the matrix elements of the operators entering the Hamil-
tonian can be expressed completely in the dual basis or in a
mixed representation

tᾱβ̄ = ηαηβ t̃αβ̃ , (4a)

vᾱβ̄,γ̄ δ̄ = ηαηβηγ ηδvα̃β̃,γ̃ δ̃, (4b)

vᾱβ,γ δ̄ = ηαηδvα̃β,γ δ̃, (4c)

and so on. The advantage of the above relations is that many-
body operators are invariant with respect to (partial) changes
of the single-particle basis as long as barred quantities are
transformed consistently for each separate index. For exam-
ple,

∑

αβ

tαβc†
αcβ =

∑

ᾱβ

tᾱβ c̄†
αcβ =

∑

ᾱβ̄

tᾱβ̄ c̄†
α c̄β , (5)

and similarly for all other components of Eq. (1). This prop-
erty facilitates the definition of the Gorkov propagators in
Sec. II A and propagates to all tensor products of propaga-
tors and operators arising in the diagrammatic expansion of
perturbation and SCGF theories.

The introduction of the dual basis is not strictly mandatory
such that the Gorkov formalism presented in this work could
be derived without making use of barred indices. However,
definition (2) makes it easier to elegantly handle Nambu in-
dices for normal and anomalous propagators and accounts
automatically for the phases that are related to broken sym-
metries in the formalism. Only in the last step of deriving
working Gorkov-ADC(3) equations the transformation T is
identified with the time-reversal operator and the phases ηα

explicitly stated (see also Appendix A). More importantly, the
combined use of Nambu indices and an appropriate dual basis
can be extended into a generalized Nambu-covariant formal-
ism as discussed in Refs. [40,41]. In Nambu-covariant Green’s
function theory, all normal and anomalous propagators appear
as specific elements of a unique propagator carrying the com-
mon features in their spectral representations.

A. Gorkov propagators

The Gorkov-SCGF approach builds on relaxing the re-
quirement that the unperturbed state is an eigenstate of the
particle-number operator and seeking the solution of the
grand-canonical-like Hamiltonian2

& ≡ H − µN, (6)

where µ denotes the chemical potential and N is the particle
number operator. The Hamiltonian is partitioned into a un-
perturbed term &U containing only one-body vertices and an
interacting part as follows:

& ≡ &U + &I = (T + U − µN ) + (−U + V ), (7)

where U denotes an external mean-field-like potential.

2Being presently interested in a zero-temperature formalism, the
T -dependent term of the grand-canonical potential drops out. More-
over, it is understood that a separate chemical potential for each
different fermion is to be considered when the system consists of
more than one type of particle.

We consider eigenstates of the Hamiltonian conserving
even- (e) or odd- (o) number parity

&
∣∣'e(o)

k

〉
= &k

∣∣'e(o)
k

〉
, (8)

where

|'e(o)〉 =
∞∑

n=0

c2n(2n+1)|ψ2n(2n+1)〉 (9)

is a superposition of states |ψ l〉 that are eigenstates of N with
eigenvalue l . Rather than the ground state of H , Gorkov SCGF
formalism targets the state |'0〉 minimizing

&0 = min
|'0〉

{〈'0|&|'0〉} (10)

under the constraint

N = 〈'0|N |'0〉, (11)

where N denotes the number of particles for the system under
consideration. While the exact |'0〉 associated with a finite
system is indeed an eigenstate of N , it is not enforced to do so
in the thermodynamic limit or when being approximated. In
such cases, it is only constrained to carry the particle number
N on average.

For a typical superfluid system approaching the thermody-
namic limit, the ground-state energies of Eq. (1) associated
with N particles, H |ψN

0 〉 = EN
0 |ψN

0 〉, will differ from each
other only by multiples of the chemical potential

EN±2n
0 ≈ EN

0 ± 2nµ ± n)εP for n = 1, 2, 3, . . . , (12)

since µ is substantially independent of N at large particle
number and, likewise, the average cost for the possible cre-
ation of Cooper pairs, )εP, will be the same every time two
particles are added. Equations (10) and (11) naturally allow
us to interpret state |'0〉 as the fermionic part of a ground-
state wave function in equilibrium with a reservoir of Cooper
pairs. Hence, defining Gorkov propagators with respect to
|'0〉 directly provides a theory for superconductivity and
superfluidity. For finite-size systems, such as atomic nuclei
or molecules, Eq. (12) may hold only in a very approximate
way. Because both Hamiltonians H and & preserve particle
number, the requirements (10) and (11) will force |'0〉 to be
the true ground state |ψN

0 〉, with an exact number of particles.
The breaking of particle-number symmetry arises natu-

rally, in most cases, whenever approximations have to be
made, typically in computing the self-energy. This is true
for both Dyson and Gorkov formulations of Green’s function
theory since they equally rely on an open Fock space, where
mixing of particle number as in Eq. (9) is fully allowed. In
fact both, formulations can be seen as just one theory where
in the first case the reference state preserves the symmetries
of the Hamiltonian from the start, whereas in the second case
one begins with a symmetry-broken reference but with the
advantage of a better radius of convergence for the perturba-
tive expansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number shall
be restored.

For Gorkov theory, the symmetry breaking is more sub-
stantial because it is imposed into the formalism from the start
through &U . Hence, one may wish to eventually restore the
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particle-number operator and seeking the solution of the
grand-canonical-like Hamiltonian2

& ≡ H − µN, (6)

where µ denotes the chemical potential and N is the particle
number operator. The Hamiltonian is partitioned into a un-
perturbed term &U containing only one-body vertices and an
interacting part as follows:

& ≡ &U + &I = (T + U − µN ) + (−U + V ), (7)

where U denotes an external mean-field-like potential.

2Being presently interested in a zero-temperature formalism, the
T -dependent term of the grand-canonical potential drops out. More-
over, it is understood that a separate chemical potential for each
different fermion is to be considered when the system consists of
more than one type of particle.

We consider eigenstates of the Hamiltonian conserving
even- (e) or odd- (o) number parity

&
∣∣'e(o)

k

〉
= &k

∣∣'e(o)
k

〉
, (8)

where

|'e(o)〉 =
∞∑

n=0

c2n(2n+1)|ψ2n(2n+1)〉 (9)

is a superposition of states |ψ l〉 that are eigenstates of N with
eigenvalue l . Rather than the ground state of H , Gorkov SCGF
formalism targets the state |'0〉 minimizing

&0 = min
|'0〉

{〈'0|&|'0〉} (10)

under the constraint

N = 〈'0|N |'0〉, (11)

where N denotes the number of particles for the system under
consideration. While the exact |'0〉 associated with a finite
system is indeed an eigenstate of N , it is not enforced to do so
in the thermodynamic limit or when being approximated. In
such cases, it is only constrained to carry the particle number
N on average.

For a typical superfluid system approaching the thermody-
namic limit, the ground-state energies of Eq. (1) associated
with N particles, H |ψN

0 〉 = EN
0 |ψN

0 〉, will differ from each
other only by multiples of the chemical potential

EN±2n
0 ≈ EN

0 ± 2nµ ± n)εP for n = 1, 2, 3, . . . , (12)

since µ is substantially independent of N at large particle
number and, likewise, the average cost for the possible cre-
ation of Cooper pairs, )εP, will be the same every time two
particles are added. Equations (10) and (11) naturally allow
us to interpret state |'0〉 as the fermionic part of a ground-
state wave function in equilibrium with a reservoir of Cooper
pairs. Hence, defining Gorkov propagators with respect to
|'0〉 directly provides a theory for superconductivity and
superfluidity. For finite-size systems, such as atomic nuclei
or molecules, Eq. (12) may hold only in a very approximate
way. Because both Hamiltonians H and & preserve particle
number, the requirements (10) and (11) will force |'0〉 to be
the true ground state |ψN

0 〉, with an exact number of particles.
The breaking of particle-number symmetry arises natu-

rally, in most cases, whenever approximations have to be
made, typically in computing the self-energy. This is true
for both Dyson and Gorkov formulations of Green’s function
theory since they equally rely on an open Fock space, where
mixing of particle number as in Eq. (9) is fully allowed. In
fact both, formulations can be seen as just one theory where
in the first case the reference state preserves the symmetries
of the Hamiltonian from the start, whereas in the second case
one begins with a symmetry-broken reference but with the
advantage of a better radius of convergence for the perturba-
tive expansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number shall
be restored.

For Gorkov theory, the symmetry breaking is more sub-
stantial because it is imposed into the formalism from the start
through &U . Hence, one may wish to eventually restore the
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while the matrix elements of the operators entering the Hamil-
tonian can be expressed completely in the dual basis or in a
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ᾱβ
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α c̄β , (5)

and similarly for all other components of Eq. (1). This prop-
erty facilitates the definition of the Gorkov propagators in
Sec. II A and propagates to all tensor products of propaga-
tors and operators arising in the diagrammatic expansion of
perturbation and SCGF theories.

The introduction of the dual basis is not strictly mandatory
such that the Gorkov formalism presented in this work could
be derived without making use of barred indices. However,
definition (2) makes it easier to elegantly handle Nambu in-
dices for normal and anomalous propagators and accounts
automatically for the phases that are related to broken sym-
metries in the formalism. Only in the last step of deriving
working Gorkov-ADC(3) equations the transformation T is
identified with the time-reversal operator and the phases ηα

explicitly stated (see also Appendix A). More importantly, the
combined use of Nambu indices and an appropriate dual basis
can be extended into a generalized Nambu-covariant formal-
ism as discussed in Refs. [40,41]. In Nambu-covariant Green’s
function theory, all normal and anomalous propagators appear
as specific elements of a unique propagator carrying the com-
mon features in their spectral representations.
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perturbed term &U containing only one-body vertices and an
interacting part as follows:

& ≡ &U + &I = (T + U − µN ) + (−U + V ), (7)

where U denotes an external mean-field-like potential.

2Being presently interested in a zero-temperature formalism, the
T -dependent term of the grand-canonical potential drops out. More-
over, it is understood that a separate chemical potential for each
different fermion is to be considered when the system consists of
more than one type of particle.

We consider eigenstates of the Hamiltonian conserving
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where N denotes the number of particles for the system under
consideration. While the exact |'0〉 associated with a finite
system is indeed an eigenstate of N , it is not enforced to do so
in the thermodynamic limit or when being approximated. In
such cases, it is only constrained to carry the particle number
N on average.

For a typical superfluid system approaching the thermody-
namic limit, the ground-state energies of Eq. (1) associated
with N particles, H |ψN
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0 〉, will differ from each
other only by multiples of the chemical potential
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0 ± 2nµ ± n)εP for n = 1, 2, 3, . . . , (12)

since µ is substantially independent of N at large particle
number and, likewise, the average cost for the possible cre-
ation of Cooper pairs, )εP, will be the same every time two
particles are added. Equations (10) and (11) naturally allow
us to interpret state |'0〉 as the fermionic part of a ground-
state wave function in equilibrium with a reservoir of Cooper
pairs. Hence, defining Gorkov propagators with respect to
|'0〉 directly provides a theory for superconductivity and
superfluidity. For finite-size systems, such as atomic nuclei
or molecules, Eq. (12) may hold only in a very approximate
way. Because both Hamiltonians H and & preserve particle
number, the requirements (10) and (11) will force |'0〉 to be
the true ground state |ψN

0 〉, with an exact number of particles.
The breaking of particle-number symmetry arises natu-

rally, in most cases, whenever approximations have to be
made, typically in computing the self-energy. This is true
for both Dyson and Gorkov formulations of Green’s function
theory since they equally rely on an open Fock space, where
mixing of particle number as in Eq. (9) is fully allowed. In
fact both, formulations can be seen as just one theory where
in the first case the reference state preserves the symmetries
of the Hamiltonian from the start, whereas in the second case
one begins with a symmetry-broken reference but with the
advantage of a better radius of convergence for the perturba-
tive expansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number shall
be restored.

For Gorkov theory, the symmetry breaking is more sub-
stantial because it is imposed into the formalism from the start
through &U . Hence, one may wish to eventually restore the
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tᾱβ̄ c̄†
α c̄β , (5)

and similarly for all other components of Eq. (1). This prop-
erty facilitates the definition of the Gorkov propagators in
Sec. II A and propagates to all tensor products of propaga-
tors and operators arising in the diagrammatic expansion of
perturbation and SCGF theories.

The introduction of the dual basis is not strictly mandatory
such that the Gorkov formalism presented in this work could
be derived without making use of barred indices. However,
definition (2) makes it easier to elegantly handle Nambu in-
dices for normal and anomalous propagators and accounts
automatically for the phases that are related to broken sym-
metries in the formalism. Only in the last step of deriving
working Gorkov-ADC(3) equations the transformation T is
identified with the time-reversal operator and the phases ηα

explicitly stated (see also Appendix A). More importantly, the
combined use of Nambu indices and an appropriate dual basis
can be extended into a generalized Nambu-covariant formal-
ism as discussed in Refs. [40,41]. In Nambu-covariant Green’s
function theory, all normal and anomalous propagators appear
as specific elements of a unique propagator carrying the com-
mon features in their spectral representations.

A. Gorkov propagators

The Gorkov-SCGF approach builds on relaxing the re-
quirement that the unperturbed state is an eigenstate of the
particle-number operator and seeking the solution of the
grand-canonical-like Hamiltonian2

& ≡ H − µN, (6)

where µ denotes the chemical potential and N is the particle
number operator. The Hamiltonian is partitioned into a un-
perturbed term &U containing only one-body vertices and an
interacting part as follows:

& ≡ &U + &I = (T + U − µN ) + (−U + V ), (7)

where U denotes an external mean-field-like potential.

2Being presently interested in a zero-temperature formalism, the
T -dependent term of the grand-canonical potential drops out. More-
over, it is understood that a separate chemical potential for each
different fermion is to be considered when the system consists of
more than one type of particle.

We consider eigenstates of the Hamiltonian conserving
even- (e) or odd- (o) number parity
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where

|'e(o)〉 =
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c2n(2n+1)|ψ2n(2n+1)〉 (9)

is a superposition of states |ψ l〉 that are eigenstates of N with
eigenvalue l . Rather than the ground state of H , Gorkov SCGF
formalism targets the state |'0〉 minimizing

&0 = min
|'0〉

{〈'0|&|'0〉} (10)

under the constraint

N = 〈'0|N |'0〉, (11)

where N denotes the number of particles for the system under
consideration. While the exact |'0〉 associated with a finite
system is indeed an eigenstate of N , it is not enforced to do so
in the thermodynamic limit or when being approximated. In
such cases, it is only constrained to carry the particle number
N on average.

For a typical superfluid system approaching the thermody-
namic limit, the ground-state energies of Eq. (1) associated
with N particles, H |ψN

0 〉 = EN
0 |ψN

0 〉, will differ from each
other only by multiples of the chemical potential

EN±2n
0 ≈ EN

0 ± 2nµ ± n)εP for n = 1, 2, 3, . . . , (12)

since µ is substantially independent of N at large particle
number and, likewise, the average cost for the possible cre-
ation of Cooper pairs, )εP, will be the same every time two
particles are added. Equations (10) and (11) naturally allow
us to interpret state |'0〉 as the fermionic part of a ground-
state wave function in equilibrium with a reservoir of Cooper
pairs. Hence, defining Gorkov propagators with respect to
|'0〉 directly provides a theory for superconductivity and
superfluidity. For finite-size systems, such as atomic nuclei
or molecules, Eq. (12) may hold only in a very approximate
way. Because both Hamiltonians H and & preserve particle
number, the requirements (10) and (11) will force |'0〉 to be
the true ground state |ψN

0 〉, with an exact number of particles.
The breaking of particle-number symmetry arises natu-

rally, in most cases, whenever approximations have to be
made, typically in computing the self-energy. This is true
for both Dyson and Gorkov formulations of Green’s function
theory since they equally rely on an open Fock space, where
mixing of particle number as in Eq. (9) is fully allowed. In
fact both, formulations can be seen as just one theory where
in the first case the reference state preserves the symmetries
of the Hamiltonian from the start, whereas in the second case
one begins with a symmetry-broken reference but with the
advantage of a better radius of convergence for the perturba-
tive expansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number shall
be restored.

For Gorkov theory, the symmetry breaking is more sub-
stantial because it is imposed into the formalism from the start
through &U . Hence, one may wish to eventually restore the
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unperturbed ones, i.e.,

G11
ab (ω) ≡

↑ ω

b

a

,
(B5a)

G12
ab (ω) ≡

↑ ω

b̄

a

,
(B5b)

G21
ab (ω) ≡

↑ ω

b

ā

,
(B5c)

G22
ab (ω) ≡

↑ ω

b̄

ā

.
(B5d)

Diagrammatic rules to compute irreducible self-energies are

the same as for reducible ones, with the only difference

that dressed propagators (B5) have to be used instead of

unperturbed ones.

2. Self-energies

The present section addresses the derivation of first- and

second-order self-energy diagrams.

a. First order

The first normal contribution corresponds to the standard

Hartree-Fock self-energy. It is depicted as
Σ 11 (1)ab (ω) =

b
c

d

a

↓ ω , (B6)

and reads

! 11 (1)
ab (ω) = −i

∫

C↑

dω ′

2π

∑

cd

V̄acbd G 11
dc (ω ′),

(B7)

where the energy integral is to be performed in the upper

half of the complex energy plane, according to the convention

introduced in Rule 8. Inserting the Lehmann form (38a) of the

propagator one obtains
! 11 (1)

ab (ω) = −i
∫

C↑

dω ′

2π

∑

cd,k

V̄acbd U k
d U k∗

cω ′ − ωk + iη
− i

∫

C↑

dω ′

2π

∑

cd,k

V̄acbd V̄ k∗
d V̄ k

cω ′ + ωk − iη

= ∑

cd,k

V̄acbd V̄ k∗
d V̄ k

c ,

(B8)

where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā

↓ ω , (B9)

which reads

! 22 (1)
ab (ω) = −i

∫

C↓

dω ′

2π

∑

cd

V̄
b̄d̄āc̄ G 22

dc (ω ′)= −i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
cω ′ − ωk + iη

− i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄

Ū k∗
d Ū k

cω ′ + ωk − iη

= − ∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
c= − ∑

cd,k

V̄
b̄cād V̄ k

c V̄ k∗
d= −! 11 (1)

b̄ā= − [
! 11 (1)

āb̄
]∗
.

(B10)

The anomalous contributions to the self-energy at first order

are

Σ 12 (1)ab (ω) =
b̄

← ω

a
c

d̄

,
(B11)

Σ 21 (1)ab (ω) =

d

← ω

c̄
ā

b
, (B12)

and are written, respectively, as! 21 (1)
ab (ω) = − i

2

∫

C↑

dω ′

2π

∑

cd

V̄
ab̄cd̄ G 12

cd (ω ′)= − i

2

∫

C↑

dω ′

2π

∑

cd,k

V̄
ab̄cd̄ U k

c V k∗
dω ′ − ωk + iη
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āb̄
]∗
.

(B10)

The anomalous contributions to the self-energy at first order

are

Σ 12 (1)ab (ω) =
b̄

← ω

a
c

d̄

,
(B11)

Σ 21 (1)ab (ω) =

d

← ω

c̄
ā
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! 11 (1)

ab (ω) = −i
∫

C↑

dω ′

2π

∑

cd,k

V̄acbd U k
d U k∗

cω ′ − ωk + iη
− i

∫

C↑

dω ′

2π

∑

cd,k

V̄acbd V̄ k∗
d V̄ k

cω ′ + ωk − iη

= ∑

cd,k

V̄acbd V̄ k∗
d V̄ k

c ,

(B8)

where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā

↓ ω , (B9)

which reads

! 22 (1)
ab (ω) = −i

∫

C↓

dω ′

2π

∑

cd

V̄
b̄d̄āc̄ G 22

dc (ω ′)= −i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
cω ′ − ωk + iη

− i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄

Ū k∗
d Ū k

cω ′ + ωk − iη

= − ∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
c= − ∑

cd,k

V̄
b̄cād V̄ k

c V̄ k∗
d= −! 11 (1)

b̄ā= − [
! 11 (1)

āb̄
]∗
.

(B10)

The anomalous contributions to the self-energy at first order

are

Σ 12 (1)ab (ω) =
b̄

← ω

a
c

d̄

,
(B11)

Σ 21 (1)ab (ω) =

d

← ω

c̄
ā

b
, (B12)

and are written, respectively, as! 21 (1)
ab (ω) = − i

2

∫

C↑

dω ′

2π

∑

cd

V̄
ab̄cd̄ G 12

cd (ω ′)= − i

2

∫

C↑

dω ′

2π

∑

cd,k

V̄
ab̄cd̄ U k

c V k∗
dω ′ − ωk + iη
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unperturbed ones, i.e.,

G11
ab (ω) ≡

↑ ω

b

a

,
(B5a)

G12
ab (ω) ≡

↑ ω

b̄

a

,
(B5b)

G21
ab (ω) ≡

↑ ω

b

ā

,
(B5c)

G22
ab (ω) ≡

↑ ω

b̄

ā

.
(B5d)

Diagrammatic rules to compute irreducible self-energies are

the same as for reducible ones, with the only difference

that dressed propagators (B5) have to be used instead of

unperturbed ones.

2. Self-energies

The present section addresses the derivation of first- and

second-order self-energy diagrams.

a. First order

The first normal contribution corresponds to the standard

Hartree-Fock self-energy. It is depicted as
Σ 11 (1)ab (ω) =

b
c

d

a

↓ ω , (B6)

and reads

! 11 (1)
ab (ω) = −i

∫

C↑

dω ′

2π

∑

cd

V̄acbd G 11
dc (ω ′),

(B7)

where the energy integral is to be performed in the upper

half of the complex energy plane, according to the convention

introduced in Rule 8. Inserting the Lehmann form (38a) of the

propagator one obtains
! 11 (1)

ab (ω) = −i
∫

C↑

dω ′

2π

∑

cd,k

V̄acbd U k
d U k∗

cω ′ − ωk + iη
− i

∫

C↑

dω ′

2π

∑

cd,k

V̄acbd V̄ k∗
d V̄ k

cω ′ + ωk − iη

= ∑

cd,k

V̄acbd V̄ k∗
d V̄ k

c ,

(B8)

where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā

↓ ω , (B9)

which reads

! 22 (1)
ab (ω) = −i

∫

C↓

dω ′

2π

∑

cd

V̄
b̄d̄āc̄ G 22

dc (ω ′)= −i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
cω ′ − ωk + iη

− i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄

Ū k∗
d Ū k

cω ′ + ωk − iη

= − ∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
c= − ∑

cd,k

V̄
b̄cād V̄ k

c V̄ k∗
d= −! 11 (1)

b̄ā= − [
! 11 (1)

āb̄
]∗
.

(B10)

The anomalous contributions to the self-energy at first order

are

Σ 12 (1)ab (ω) =
b̄

← ω

a
c

d̄

,
(B11)

Σ 21 (1)ab (ω) =

d

← ω

c̄
ā

b
, (B12)

and are written, respectively, as! 21 (1)
ab (ω) = − i

2

∫

C↑

dω ′

2π

∑

cd

V̄
ab̄cd̄ G 12

cd (ω ′)= − i

2

∫

C↑

dω ′

2π

∑

cd,k

V̄
ab̄cd̄ U k

c V k∗
dω ′ − ωk + iη
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In terms of Nambu fields:
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Diagrams inflation with (Gorkov) SCGF theory

Gorkov at 
2nd order:

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011) ]
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(a) (b) (c) (d)

FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,
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for forward poles
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where
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The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:
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2
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λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are
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)

for forward poles
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(
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for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other
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FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Notice that the latter relationship can be also obtained from the
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and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
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where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read
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antisymmetrized matrix elements of the NN interaction.
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where time-reversal invariance is not assumed. In such a limit,
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Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456
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)

for backward poles,

(44)

where
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=
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αβγ δ
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αβγ δ
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α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:
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whereas the corresponding first-order corrections to the en-
ergy matrix are
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)

for forward poles
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for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix
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Background: The Gorkov approach to self-consistent Green’s function theory has been formulated by Somà,
Duguet, and Barbieri in [Phys. Rev. C 84, 064317 (2011)]. Over the past decade, it has become a method of refer-
ence for first-principles computations of semimagic nuclear isotopes. The currently available implementation is
limited to a second-order self-energy and neglects particle-number nonconserving terms arising from contracting
three-particle forces with anomalous propagators. For nuclear physics applications, this is sufficient to address
first-order energy differences (i.e., two neutron separation energies, excitation energies of states dominating
the one-nucleon spectral function), ground-state radii and moments on an accurate enough basis. However,
addressing absolute binding energies, fine spectroscopic details of N ± 1 particle systems or delicate quantities
such as second-order energy differences associated with pairing gaps, requires going to higher truncation orders.
Purpose: The formalism is extended to third order in the algebraic diagrammatic construction (ADC) expansion
with two-body Hamiltonians.
Methods: The expansion of Gorkov propagators in Feynman diagrams is combined with the algebraic diagram-
matic construction up to the third order as an organization scheme to generate the Gorkov self-energy.
Results: Algebraic expressions for the static and dynamic contributions to the self-energy, along with equa-
tions for the matrix elements of the Gorkov eigenvalue problem, are derived. It is first done for a general basis
before specifying the set of equations to the case of spherical systems displaying rotational symmetry. Workable
approximations to the full self-consistency problem are also elaborated on. The formalism at third order it thus
complete for a general two-body Hamiltonian.
Conclusions: Working equations for the full Gorkov-ADC(3) are now available for numerical implementation.

DOI: 10.1103/PhysRevC.105.044330

I. INTRODUCTION

Ab initio quantum many-body computations are crucial to
high-precision investigations in several fields of physics. Most
applications to finite-size fermion systems concern nuclear
physics and quantum chemistry to the point that these dis-
ciplines often share the same computational techniques and
cross fertilization among the two has led to advancements
of ab initio theories over the years. For nuclear physics, the
past two decades have witnessed remarkable breakthroughs
in first-principles computations of nuclear structure that ex-
ploit soft nuclear interactions based on chiral effective-field
theory [1]. The availability of many-body methods that scale
favorably with particle number has enabled precision predic-
tions of medium-mass isotopes and the possibility to confront
experimental information of exotic isotopes at the limits of
stability (see Refs. [2,3] for a review).

Many successful approaches, such as many-body pertur-
bation theory (MBPT) [4], self-consistent Green’s function
(SCGF) [5], coupled cluster (CC) [6], and in-medium simi-
larity renormalization group [7] can reach sizable systems by
restricting the Fock space to selected excited configurations
for which it is possible to resum infinite series of diagrams.
However, in their basic formalism, they are limited to closed-
shell systems. For open-shell cases, near-degeneracies in the
single-particle spectrum often prevent the use of any perturba-
tion expansion. The possible ways around this issue are either
multireference approaches or the use of symmetry-breaking
reference states. In the first case, all degenerate configurations
are diagonalized explicitly, which, however, adds a costly
step to the calculation that scales exponentially with system
size [8], with the notable exception of a recently proposed
multireference many-body perturbation theory [9–11]. The
second path relies on using a reference state that explicitly
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D̄†

Σ11
αβ(ω) :

FIG. 4. (left column) The two time orderings through which
the diagram of Fig. 2(a) contributes to !̃11(ω). The top (bottom)
diagram corresponds to the forward-going (backward-going) prop-
agation. The matrices C and D to which a given vertex contributes
are indicated next to it. (right column) Analogous time orderings
for the corresponding contributions to !̃21(ω) [Fig. 2(b)]. The C
(D) topologies that contribute to the anomalous index of !̃21(ω) are
highlighted with green (orange) vertices. A comparison between the
vertices on the left- and right-hand sides elucidates the occurrence of
the same couplings C and D across all Eqs. (29).

to !̃21(ω): the top part of the upper-right diagram is exactly
the same as the top part of the lower-left one, but it will
enter as a transposed matrix in the Lehmann representation
because it is an exit point of the self-energy in the first
case and entry point in the second. This property is general
because the net number of propagator (lines) flowing into
the interaction vertex is reversed exactly in the same way
both for backward time propagation and for the inversion of
a Nambu indices between normal to anomalous. It is easy
to convince oneself that the same considerations apply to
particle-number nonconserving interactions, as long as these
are Hermitian. Moreover, as for the case of quasiparticle
antisymmetrization, the presence of anomalous propagators
allows for any possible topological combination of lines and
ensures that this correspondence is realized also for more
complex diagrams, at any order in the Feynman expansion.
Therefore, any portion of Feynman diagram contributing to
a normal (anomalous) forward part of the self-energy will
contribute identically to the backward part of corresponding
anomalous (normal) case. It follows that exactly the same
matrices C and D must appear in all four self-energies of
Eqs. (29).

The rigorous proof of this property is beyond the scope of
the present work and is not elaborated on further. However,
let us recall that relations (29) naturally stem out from Nambu
covariant theory of Ref. [40]. In this case both the normal and
anomalous contributions are embedded in a single propagator
such that the C and D couplings are part of a unique cou-
pling matrix. For our purposes, we have verified by hand that
Eqs. (29) are satisfied by all diagrams discussed in the present
work.

B. Third-order skeleton diagrams

Following the above discussion one concludes that it is
sufficient to derive ADC(3) expressions of the coupling and
interaction matrices associated with one particular Gorkov
self-energy. While the diagrams contributing to !̃11(ω) are
presently employed, the other self-energies, Eqs. (29b)–(29d),
were checked to lead to the same results.

There exist 17 possible third-order skeleton diagrams that
must be grouped in three classes on the basis of their con-
nection through Pauli exchanges of propagator lines. These
are depicted respectively in Figs. 5–7. Each middle vertex in
these diagrams acts as a seed for the all-orders Tamm-Dancoff
resummations generated by ADC(3).

Diagram 5(a) is the diagram that makes two-particle and
two-hole interact in the ISCs in the usual Dyson-ADC(3)
formalism, respectively for forward and backward time prop-
agation. Adding diagrams 5(b), 5(c), and 5(d) guarantees the
antisymmetrization with respect to the third, noninteracting
quasiparticle. The frequency integrals needed to work out
the algebraic expressions of these diagrams are discussed in
Appendix C and lead to the same contributions as in Eqs. (39),
plus second-order corrections to the coupling amplitudes and
first-order correction to the energy matrix.

Let us first define the tensor

t k3k4
k1k2

≡
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δU k3
γ U k4

δ

−
(
ωk1 + ωk2 + ωk3 + ωk4

) (42)

that is closely related to the lowest-order double amplitude
in Bogoliubov coupled cluster (BCC) theory [47]. Note that
BCC expressions are typically derived performing first the
normal ordering of the Hamiltonian with respect to the Bo-
goliubov vacuum and expressing it in terms of Bogoliubov
quasiparticle operators whereas the original matrix elements
of V appear in Eq. (42). In the special case of a HFB mean
field, U and V amplitudes account for the normal ordering
and t k3k4

k1k2
does indeed reduce to the lowest order BCC double

amplitude. Consequently, Eq. (42) extends the concept of
BCC amplitudes to account for the strength fragmentation of
a dressed propagator. With this tensor at hand, the contribu-
tions to the coupling amplitudes resulting from the diagrams
displayed in Fig. 5 read

C (IIa)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k1k2
k4k5

V̄k3
λ , (43a)

C (IIb)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k1k2
k4k5

U k3
µ , (43b)

D̄(IIa)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k4k5
k1k2

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (43c)

D̄(IIb)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k4k5
k1k2

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ. (43d)

The first-order corrections to the energy matrix differ accord-
ing to whether they refer to forward or backward poles of the
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(a) (b) (c) (d)

FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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D̄(IIf )
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
µ t k2k8

k3k7

(
U k7

ν V̄k8
λ

)∗
vµν,αλ, (50e)

D̄(IIg)
r,α = 1√

6
A123

∑

µνλ
k7k8

U k1
λ t k2k8

k3k7

(
U k7

µ U k8
ν

)∗
vµν,αλ, (50f)

whereas the particle-hole contribution to the ISC energy inter-
action matrix is given by

E (Ic)
r,r′ = 1

6A123A456
(
δk1,k4E

(ph)
k2k3,k5k6

)
, (51)

with

E (ph)
k2k3,k5k6

=
∑

αβγ δ

(
U k2

α V̄k3
β

)∗
vαδ,βγU k5

γ V̄k6
δ . (52)

C. Nonskeleton contributions

Sections III A and III B exhaust all the diagrams that enter
fully self-consistent computations up to ADC(3). In this case,
the self-energy is purely a functional of the fully dressed
propagator, G(ω), and all above equations are expressed in
terms of its spectroscopic amplitudes and poles, Eqs. (19)–
(21). If, instead, the many-body expansion is based on the
unperturbed reference propagator G(0)(ω) additional compos-
ite, i.e., nonskeleton, diagrams need to be included. Thus, the
present section along with Appendix B introduce all remain-
ing composite diagrams up to third order.

The unperturbed propagator (25) has a spectral representa-
tion analogous to Eqs. (18)

G(0)11
αβ (ω) =

∑

k

{
Uk

αUk
β

∗

ω − ε (0)
k + iη

+
V̄k

α
∗V̄k

β

ω + ε (0)
k − iη

}

, (53a)

G(0)12
αβ (ω) =

∑

k

{
Uk

αVk
β

∗

ω − ε (0)
k + iη

+
V̄k

α
∗Ūk

β

ω + ε (0)
k − iη

}

, (53b)

G(0)21
αβ (ω) =

∑

k

{
Vk

αUk
β

∗

ω − ε (0)
k + iη

+
Ūk

α
∗V̄k

β

ω + ε (0)
k − iη

}

, (53c)

G(0)22
αβ (ω) =

∑

k

{
Vk

αVk
β

∗

ω − ε (0)
k + iη

+
Ūk

α
∗Ūk

β

ω + ε (0)
k − iη

}

, (53d)

where we used the notation ε (0)
k , Uk , and Vk to stress that these

are not correlated spectroscopic quantities but unperturbed
ones. For the present purpose, these are the solution of the
HFB eigenvalue problem associated with *U ,

∑

β

(
tαβ + uαβ − µδαβ uan.

αβ̄

−
(
uan.

ᾱβ

)∗ −tβ̄ᾱ − uβ̄ᾱ + µδαβ

)(
Uk

β

Vk
β

)

= ε (0)
k

(
Uk

α

Vk
α

)
. (54)

Since the composite diagrams discussed in this section assume
a HFB reference state, their contributions to ADC interactions

and amplitudes are expressed in terms of the unperturbed state
generated by Eq. (54).

1. Static self-energy

The composite diagrams contributing to !(∞)
αβ (ω) can be

obtained by expanding Gorkov Eq. (26) up to second order
and by inserting the results into the diagrams of Fig. 1. The
resulting equations for the static self-energies are rather cum-
bersome and are detailed in Appendix B. However, these are
not needed in the vast majority of applications since their
self-consistent counter part, Eqs. (37), is easier to compute
and contains all of them implicitly.

2. Third-order terms

The energy-dependent !̃(ω) at second order receives no
contributions from self-energy insertions. Thus, the only com-
posite diagrams appear at order three and involve the insertion
of a static one-body potential to the known diagrams of Fig. 2.
This leads to the ten diagrams displayed in Fig. 8 for a generic
external potential U . In the following, we provide the contri-
butions from these diagrams in terms of the matrix elements
of U and the amplitudes of Eq. (53), with the understanding
that these need to be substituted with those of V HFB − U
introduced by the perturbation *I from Eq. (7).

The top two rows in Fig. 8 cover all diagrams containing
self-energies insertions originating from the normal compo-
nent of U , i.e., the term associated with matrix elements uαβ

in Eq. (13). They contribute to the coupling matrices C and D
through the normal BCC singlet amplitude

t k1
k2

≡
∑

αβ

V̄k1
α uαβUk2

β

−
(
ωk1 + ωk2

) , (55)

and to the energy matrix through particle and hole interactions

E (p)
k1k2

≡
∑

αβ

(
Uk1

α

)∗
uαβUk2

β , (56a)

E (h)
k1k2

≡
∑

αβ

V̄k1
α uαβ

(
V̄k2

β

)∗
. (56b)

All together, this leads to the following ADC(3) contributions
to the coupling matrices:

C (IIh)
α,r = 1√

6
A123

∑

µνλ
k7

vαλ,µν

(
V̄k7

µ

)∗[
t k7
k1

− t k1
k7

]
Uk2

ν V̄k3
λ , (57a)

C (IIi)
α,r = 1√

6
P123

∑

µνλ
k7

vαλ,µν

(
Uk7

λ

)∗[
t k7
k1

− t k1
k7

]
Uk2

µ Uk3
ν , (57b)

D̄(IIh)
r,α = 1√

6
A123

∑

µν
λk7

(
Uk7

µ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

ν Uk3
λ vµν,αλ, (57c)

D̄(IIi)
r,α = 1√

6
P123

∑

µν
λk7

(
V̄k7

λ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

µ V̄k3
ν vµν,αλ, (57d)
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The expectation value of any one-body operator O is given by

〈!0|O|!0〉 =
∑

αβ

oαβρβα, (23)

whereas the Migdal-Galitski-Koltun energy sum rule deliver-
ing the ground-state energy

%0 = 1
2π

∫ 0

−∞
[tαβ − µδαβ + ωδαβ]ImG11

βα (ω)dω (24)

is exact for a Hamiltonian with up to two-particle interactions.

B. Gorkov equations

The perturbative expansion of Gorkov propagators is
devised following the standard approach of defining an unper-
turbed propagator, G(0)(t − t ′), according to definitions (14)
and (15) but with % replaced by the one-body grand potential
%U . After Fourier transform to frequency domain, one finds

G(0)(ω) = [ωI − !U ]−1, (25)

where model space and Nambu indices are implicit and the
matrix inversion is performed with respect to both. One then
exploits the interaction picture to devise a perturbative expan-
sion of the full propagator of Eq. (16) that can be represented
as a series of Feynman diagrams in powers of the perturbation
%I [25].

Doing so, the standard Dyson equation for the interacting
propagator G(ω) is generalized to the set of coupled Gorkov
equations for the four propagators (18). Using Nambu’s ma-
trix notation, they read as

Gαβ (ω) = G(0)
αβ (ω) +

∑

γ δ

G(0)
αγ (ω)"*

γ δ (ω)Gδβ (ω), (26)

where the four self-energies

"*
αβ (ω) ≡

(
+*11

αβ (ω) +*12
αβ (ω)

+*21
αβ (ω) +*22

αβ (ω)

)
(27)

include all possible one-particle irreducible diagrams stripped
of their external legs. The remaining reducible diagrams are
then generated in a nonperturbative way through the all-orders

resummation generated by Eq. (26). In standard perturbation
theory, a given approximation to "*(ω) is a functional of the
unperturbed propagators G(0)(ω) and hence depends directly
on the choice of the reference state associated with %U . In
SCGF theory, the series of diagrams to be resummed is fur-
ther restricted to skeleton diagrams displaying no self-energy
insertion, provided that all propagator lines are replaced by
the interacting propagator G(ω). Since the full Dyson-Gorkov
series is included in such a propagator, the SCGF procedure
not only reduces the number of Feynman diagrams that need
to be dealt with but it implicitly accounts for higher-order
terms that are beyond the perturbative truncation chosen for
the self-energy. The self-energy becomes a functional of the
interacting propagator, "*[G; T,V ] and is no longer affected
by the choice of the unperturbed state. The price to pay for
such improvements is that diagrams expressed in terms of
G(ω) are more demanding to deal with, due to the rich pole
structure of Eqs. (18). Furthermore, "*(ω) and the Gorkov
equations (26) have respectively to be computed and solved
repeatedly through an iterative procedure.

The most general structure of the Gorkov self-energy can
be written as

"*
αβ (ω) = −U + "(∞)

αβ + "̃αβ (ω), (28)

where the auxiliary potential term U arising from %I at
first order is separated from the proper part of the self-
energy. The term "(∞) embodies the limit of the proper
self-energy to ω → ±∞ and represents the mean field
experienced by a particle in the correlated medium. It re-
duces to the Hartree-Fock-Bogoliubov (HFB) potential for a
self-consistent first-order truncation of "*(ω) but otherwise
includes additional in-medium corrections at higher orders.
Hence, it is referred to as the correlated HFB (cHFB) poten-
tial.

The components of the dynamic self-energy "̃(ω) also
have a spectral representation analogous to Eqs. (18). In this
case, the poles of the Lehmann representation are associated
with intermediate-state configurations (ISCs) combining dif-
ferent quasiparticle excitations {|!k〉; ωk}. To write the most
general form of the dynamic self-energy, a generic index r is
employed to label all possible ISCs that are eventually made
explicit in Sec. III. Thus, the general form writes

+̃11
αβ (ω) =

∑

rr′

{
Cα,r

[
1

ωI − E + iη

]

r,r′
C†

r′,β + D̄†
α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29a)

+̃12
αβ (ω) =

∑

rr′

{
Cα,r

[
1

ωI − E + iη

]

r,r′
D∗

r′,β + D̄†
α,r

[
1

ωI + ET − iη

]

r,r′
C̄T

r′,β

}
, (29b)

+̃21
αβ (ω) =

∑

rr′

{
DT

α,r

[
1

ωI − E + iη

]

r,r′
C†

r′,β + C̄∗
α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29c)

+̃22
αβ (ω) =

∑

r‘r′

{
DT

α,r

[
1

ωI − E + iη

]

r,r′
D∗

r′,β + C̄∗
α,r

[
1

ωI + ET − iη

]

r,r′
C̄T

r′,β

}
, (29d)

where Er,r′ denotes the elements of an energy matrix associated with an interaction among ISCs r and r′. Matrix E is Hermitian,
so that ET = E∗. The coupling matrices C and D couple single-particle and ISC spaces, with the elements of the barred matrices
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unperturbed ones, i.e.,

G11
ab (ω) ≡

↑ ω

b

a

,
(B5a)

G12
ab (ω) ≡

↑ ω

b̄

a

,
(B5b)

G21
ab (ω) ≡

↑ ω

b

ā

,
(B5c)

G22
ab (ω) ≡

↑ ω

b̄

ā

.
(B5d)

Diagrammatic rules to compute irreducible self-energies are

the same as for reducible ones, with the only difference

that dressed propagators (B5) have to be used instead of

unperturbed ones.

2. Self-energies

The present section addresses the derivation of first- and

second-order self-energy diagrams.

a. First order

The first normal contribution corresponds to the standard

Hartree-Fock self-energy. It is depicted as
Σ 11 (1)ab (ω) =

b
c

d

a

↓ ω , (B6)

and reads

! 11 (1)
ab (ω) = −i

∫

C↑

dω ′

2π

∑

cd

V̄acbd G 11
dc (ω ′),

(B7)

where the energy integral is to be performed in the upper

half of the complex energy plane, according to the convention

introduced in Rule 8. Inserting the Lehmann form (38a) of the

propagator one obtains
! 11 (1)

ab (ω) = −i
∫

C↑

dω ′

2π

∑

cd,k

V̄acbd U k
d U k∗

cω ′ − ωk + iη
− i

∫

C↑

dω ′

2π

∑

cd,k

V̄acbd V̄ k∗
d V̄ k

cω ′ + ωk − iη

= ∑

cd,k

V̄acbd V̄ k∗
d V̄ k

c ,

(B8)

where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā

↓ ω , (B9)

which reads

! 22 (1)
ab (ω) = −i

∫

C↓

dω ′

2π

∑

cd

V̄
b̄d̄āc̄ G 22

dc (ω ′)= −i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
cω ′ − ωk + iη

− i
∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄

Ū k∗
d Ū k

cω ′ + ωk − iη

= − ∑

cd,k

V̄
b̄d̄āc̄ V k

d V k∗
c= − ∑

cd,k

V̄
b̄cād V̄ k

c V̄ k∗
d= −! 11 (1)

b̄ā= − [
! 11 (1)

āb̄
]∗
.

(B10)

The anomalous contributions to the self-energy at first order

are

Σ 12 (1)ab (ω) =
b̄

← ω

a
c

d̄

,
(B11)

Σ 21 (1)ab (ω) =

d

← ω

c̄
ā

b
, (B12)

and are written, respectively, as! 21 (1)
ab (ω) = − i

2

∫

C↑

dω ′

2π

∑

cd

V̄
ab̄cd̄ G 12

cd (ω ′)= − i

2

∫

C↑

dω ′

2π

∑

cd,k

V̄
ab̄cd̄ U k

c V k∗
dω ′ − ωk + iη
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propagator one obtains
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where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā

↓ ω , (B9)

which reads

! 22 (1)
ab (ω) = −i

∫

C↓

dω ′

2π

∑

cd

V̄
b̄d̄āc̄ G 22

dc (ω ′)= −i
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2π
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cd,k

V̄
b̄d̄āc̄ V k

d V k∗
cω ′ − ωk + iη
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∫

C↓

dω ′

2π

∑

cd,k

V̄
b̄d̄āc̄

Ū k∗
d Ū k

cω ′ + ωk − iη
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cd,k

V̄
b̄d̄āc̄ V k

d V k∗
c= − ∑

cd,k

V̄
b̄cād V̄ k

c V̄ k∗
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! 11 (1)

āb̄
]∗
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The anomalous contributions to the self-energy at first order

are
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b
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and are written, respectively, as! 21 (1)
ab (ω) = − i
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where the residue theorem has been used, i.e., the first term,
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plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term
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b̄d̄āc̄ G 22

dc (ω ′)= −i
∫

C↓

dω ′

2π

∑

cd,k

V̄
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cd,k

V̄acbd U k
d U k∗

cω ′ − ωk + iη
− i

∫

C↑

dω ′

2π

∑

cd,k

V̄acbd V̄ k∗
d V̄ k

cω ′ + ωk − iη

= ∑

cd,k

V̄acbd V̄ k∗
d V̄ k

c ,

(B8)

where the residue theorem has been used, i.e., the first term,

with +iη in the denominator, contains no pole in the upper

plane and thus cancels out. As in the standard case the Hartree-

Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ 22 (1)ab (ω) =

b̄
c̄

d̄

ā

↓ ω , (B9)

which reads

! 22 (1)
ab (ω) = −i

∫

C↓

dω ′

2π

∑

cd

V̄
b̄d̄āc̄ G 22

dc (ω ′)= −i
∫
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2π
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cd,k
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d V k∗
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− i
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d Ū k
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d V k∗
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cd,k

V̄
b̄cād V̄ k

c V̄ k∗
d= −! 11 (1)

b̄ā= − [
! 11 (1)

āb̄
]∗
.

(B10)

The anomalous contributions to the self-energy at first order

are

Σ 12 (1)ab (ω) =
b̄

← ω

a
c

d̄

,
(B11)

Σ 21 (1)ab (ω) =

d

← ω

c̄
ā

b
, (B12)

and are written, respectively, as! 21 (1)
ab (ω) = − i

2
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2π

∑

cd

V̄
ab̄cd̄ G 12

cd (ω ′)= − i

2

∫

C↑

dω ′

2π

∑

cd,k

V̄
ab̄cd̄ U k

c V k∗
dω ′ − ωk + iη
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of type (p, q) single-particle tensors. A change of single-
particle basis modifies the coordinates of a type (p, q)
single-particle tensor according to the standard tensor
product representation of the linear group GL(H1). If we
consider the Fock space, the associated representation of
GL(H1) characterising a change of single-particle basis
can be decomposed in the sum of representations over
the N -body Hilbert space HN ⌘ H

⌦N
1

. This is a conse-
quence of the stability of HN with respect to a change of
single-particle basis. For example, if tbc are the compo-
nents of an element of H2 (i.e. of a (2, 0) single-particle
tensor), and U is the invertible matrix representing a
change of single-particle basis, the new components after
changing the single-particle basis read

t
0
bc ⌘

X

de

U
�1

bd U
�1

ce tde . (3)

In practice, working with tensors over GL(H1) allows one
to keep track of how a change of single-particle basis af-
fects a set of components. Tensors also provide a powerful
organising tool to classify contributions to observables,
which must necessarily be invariant with respect to a
change of single-particle basis. Tensorial considerations
can also be used to guide physically motivated approxi-
mations [52, 53]. Unfortunately, the practical advantages
of single-particle tensor algebra cannot be carried over
to the larger group of linear canonical transformations,
namely Bogoliubov transformations [58]. In particular,
the sub-spaces HN are no longer stable with respect to
(the group of) Bogoliubov transformations.

We explore here a more convenient tensor algebra that
arises at the price of extending H1 to a vector space of
double dimension. Such a doubled-dimension vector space
was already introduced in the work of Anderson [10] and
Nambu [11] on symmetry-broken systems. This extended
one-body Hilbert space, H

e
1
, is defined as the product of

the original one-body space and its dual,

H
e
1

⌘ H1 ⇥ H
†
1

. (4)

We define the extended basis Be of H
e
1

as

Be ⌘ B [ B̄ , (5)

where the basis B of H1 and B̄ of H †
1
are to be understood

as the free families B ⇥ {0} and {0} ⇥ B̄, respectively.
Elements of H

e
1

are vectors of the form

✓
| 1i
h 0

1
|

◆
. (6)

This extended one-body Hilbert space is equipped with
the inner product g ( . , . ), defined as

g

✓✓
| 1i
h 0

1
|

◆
,

✓
| 2i
h 0

2
|

◆◆
⌘ h 0

2
| 1i+ h 0

1
| 2i , (7)

which is a non-degenerate symmetric -bilinear form.

It is convenient to re-index elements of Be over a global
index µ ⌘ (b, l), where b denotes states in the space H1

and l 2 {1, 2} is a Nambu index. This index labels a state
of B (l = 1) or of B̄ (l = 2). We define the involution .̄ on
the set of Nambu indices l by

.̄ : 1 7! 1̄ = 2

2 7! 2̄ = 1 , (8)

and we extend it to global indices µ = (b, l) by

µ̄ ⌘ (b, l̄) . (9)

Explicitly, vectors |µi of Be are defined by

|b, 1i ⌘
✓
|bi
0

◆
, (10a)

|b, 2i ⌘
✓

0
h̄b|

◆
. (10b)

The components of the metric gµ⌫ associated to the tensor
algebra generated by the extended one-body Hilbert space
H

e
1

are defined by

gµ⌫ ⌘ g (|µi , |⌫i) . (11)

In the extended basis Be, the metric reads simply

gµ⌫ = �µ⌫̄ , (12)

where �µ⌫ is the Kronecker symbol over global indices.
We have so far introduced new global indices in H

e
1

which, together with a new inner product, will be con-
venient to use when working within the Nambu tensor
algebra. Performing an analogous study on the dual of
H

e
1

gives us the dual components of the metric, gµ⌫ . In
the extended basis Be, these components read

g
µ⌫ = �µ⌫̄ . (13)

Finally, for completeness, we define the mixed components
of the metric, gµ⌫ and gµ

⌫ , by

g
µ
⌫ ⌘

X

�

g
µ�

g�⌫ = �µ⌫ , (14)

gµ
⌫ ⌘

X

�

gµ� g
�⌫ = �µ⌫ . (15)

Creation and annihilation operators are conveniently
grouped in the Nambu fields Aµ and Āµ. These are
defined such that they read in the extended basis Be

A(b,1) ⌘ ab , (16a)

A(b,2) ⌘ āb , (16b)

Ā(b,1) ⌘ āb , (16c)

Ā(b,2) ⌘ ab . (16d)
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for practical implementations. In other words, there is
no need for a re-derivation of many-body equations when
working with two di↵erent extended bases related by a
Bogoliubov transformation. We expect that these formal
results should be useful in numerical implementations and
associated benchmarking tests.

Second, on numerical aspects, we expect the numerical
code resulting from a direct implementation of formulae
expressed in the Nambu-covariant formalism to be more
computationally e�cient than previous attempts. The
formalism provides compact and factorised expressions,
thus facilitating the implementation and the maintenance
of source codes. As we discuss later, from a computa-
tional e�ciency perspective, the equations derived in this
formalism expose more clearly a source of parallelisation.
The formalism reduces the number of Feynman diagrams
whose evaluation transparently translates into a Nambu
tensor network. Compared to the evaluation of a mul-
titude of single-particle tensor networks, we expect a
greater gain when using massively parallel hardware with
algorithms specifically designed for this kind of architec-
ture [55, 56].
Last, we stress that the Nambu-covariant formalism

may also be useful in the development of automated
pipelines. The formalism does not only reduce the num-
ber of diagrams, which would no doubt speed up auto-
mated diagrammatic generation tools, but also removes
any consideration in terms of orientations. We expect
this to bring a substantial advantage in terms of memory
processing and practical implementation.

The formalism developed in this paper is entirely equiv-
alent to any of the previous formulations. In principle,
a perfectly e�cient numerical implementation might not
benefit from it. Similarly, fully factorised and simpli-
fied formal many-body equations can also be derived in
existing formalisms. Our claim is, however, that the
Nambu-covariant formalism presented here provides a key
to uncover sources of formal simplifications and general-
isations. We also expect it will lead to new numerical
optimisations in the implementation of many-body ap-
proximations. Hopefully, this formalism can benefit other
many-body practitioners. In this paper, we present the
key aspects of the Nambu-covariant formalism and its
application to perturbation theory. In Part II, we will
discuss the application of the Nambu-covariant formalism
to many-body approximations based on self-consistently
dressed propagators and vertices.
This paper is organised as follows. We introduce the

essential ideas of Nambu tensors and their relation to Bo-
goliubov transformations in Sec. II. The resulting NCPT,
manifestly covariant with respect to Bogoliubov transfor-
mations, is then discussed in Sec. III. We define many-
body Green’s functions as Nambu tensors and explore
their expansion in terms of un-oriented Feynman dia-
grams. We provide explicit Feynman rules for the time
and energy representations, and give an additional set
of diagrammatic rules to perform Matsubara sums. In
Sec. IV, we explicitly show the connection of this approach

to previously existing formalisms, namely the Gorkov [5]
and Bogoliubov [6] ones. Finally, we summarise the key
points in Sec. V, where we also provide an outlook of
future works.

II. NAMBU TENSOR ALGEBRA

In this section, we introduce the notations that under-
pin the Nambu-covariant formalism. We discuss Nambu
fields and define general Nambu tensors in terms of their
transformation properties under a general change of basis.
We provide illustrative examples of such tensors at the
end of this section.

A. Definitions

We consider a many-body system of fermions. The
Fock space F of the many-fermion system is spanned by
the tensor products of a one-body Hilbert space H1 of the
states of a single fermion. Let us define a basis B ⌘ { |bi }
of H1. Indices b, c, . . . are used to denote states within
B.
Since we do not assume the basis to be orthogonal,

it is convenient to introduce the associated dual basis
B̄ ⌘

� ⌦
b̄
��  such that B and B̄ verify the biorthogonality

condition

⌦
b̄
�� c
↵
= �bc , (1)

where �bc denotes the usual Kronecker symbol. The dual
space of H1 is denoted as H

†
1
. For any basis B of H1,

we define the Hermitian conjugated basis B† ⌘ { hb| } of
H

†
1
. In the special case where B is orthonormal, we have

B̄ = B†.
The creation and annihilation operators associated to

B are denoted as āb and ab, respectively. Here, we chose
the bar notation used in Ref. [57] for the dual basis2. We
stress that, in general, āb = a

†
b̄
6= a

†
b [57]. Creation and an-

nihilation operators verify the canonical anticommutation
relations

{ āb, āc } = 0 , (2a)

{ ab, ac } = 0 , (2b)

{ āb, ac } = �bc . (2c)

At this point, considering tensors over H1 and H
†
1

would give us the standard single-particle tensor algebra,
which has been studied and applied in the context of
quantum chemistry in Refs. [52, 53]. For instance, let

us consider the tensor product space H
⌦p
1

⌦
⇣
H

†
1

⌘⌦q

2
Note that alternative notations exist such, as the one used in

Refs. [52, 53].
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formalism expose more clearly a source of parallelisation.
The formalism reduces the number of Feynman diagrams
whose evaluation transparently translates into a Nambu
tensor network. Compared to the evaluation of a mul-
titude of single-particle tensor networks, we expect a
greater gain when using massively parallel hardware with
algorithms specifically designed for this kind of architec-
ture [55, 56].
Last, we stress that the Nambu-covariant formalism

may also be useful in the development of automated
pipelines. The formalism does not only reduce the num-
ber of diagrams, which would no doubt speed up auto-
mated diagrammatic generation tools, but also removes
any consideration in terms of orientations. We expect
this to bring a substantial advantage in terms of memory
processing and practical implementation.

The formalism developed in this paper is entirely equiv-
alent to any of the previous formulations. In principle,
a perfectly e�cient numerical implementation might not
benefit from it. Similarly, fully factorised and simpli-
fied formal many-body equations can also be derived in
existing formalisms. Our claim is, however, that the
Nambu-covariant formalism presented here provides a key
to uncover sources of formal simplifications and general-
isations. We also expect it will lead to new numerical
optimisations in the implementation of many-body ap-
proximations. Hopefully, this formalism can benefit other
many-body practitioners. In this paper, we present the
key aspects of the Nambu-covariant formalism and its
application to perturbation theory. In Part II, we will
discuss the application of the Nambu-covariant formalism
to many-body approximations based on self-consistently
dressed propagators and vertices.
This paper is organised as follows. We introduce the

essential ideas of Nambu tensors and their relation to Bo-
goliubov transformations in Sec. II. The resulting NCPT,
manifestly covariant with respect to Bogoliubov transfor-
mations, is then discussed in Sec. III. We define many-
body Green’s functions as Nambu tensors and explore
their expansion in terms of un-oriented Feynman dia-
grams. We provide explicit Feynman rules for the time
and energy representations, and give an additional set
of diagrammatic rules to perform Matsubara sums. In
Sec. IV, we explicitly show the connection of this approach

to previously existing formalisms, namely the Gorkov [5]
and Bogoliubov [6] ones. Finally, we summarise the key
points in Sec. V, where we also provide an outlook of
future works.

II. NAMBU TENSOR ALGEBRA

In this section, we introduce the notations that under-
pin the Nambu-covariant formalism. We discuss Nambu
fields and define general Nambu tensors in terms of their
transformation properties under a general change of basis.
We provide illustrative examples of such tensors at the
end of this section.

A. Definitions

We consider a many-body system of fermions. The
Fock space F of the many-fermion system is spanned by
the tensor products of a one-body Hilbert space H1 of the
states of a single fermion. Let us define a basis B ⌘ { |bi }
of H1. Indices b, c, . . . are used to denote states within
B.
Since we do not assume the basis to be orthogonal,

it is convenient to introduce the associated dual basis
B̄ ⌘

� ⌦
b̄
��  such that B and B̄ verify the biorthogonality

condition

⌦
b̄
�� c
↵
= �bc , (1)

where �bc denotes the usual Kronecker symbol. The dual
space of H1 is denoted as H

†
1
. For any basis B of H1,

we define the Hermitian conjugated basis B† ⌘ { hb| } of
H

†
1
. In the special case where B is orthonormal, we have

B̄ = B†.
The creation and annihilation operators associated to

B are denoted as āb and ab, respectively. Here, we chose
the bar notation used in Ref. [57] for the dual basis2. We
stress that, in general, āb = a

†
b̄
6= a

†
b [57]. Creation and an-

nihilation operators verify the canonical anticommutation
relations

{ āb, āc } = 0 , (2a)

{ ab, ac } = 0 , (2b)

{ āb, ac } = �bc . (2c)

At this point, considering tensors over H1 and H
†
1

would give us the standard single-particle tensor algebra,
which has been studied and applied in the context of
quantum chemistry in Refs. [52, 53]. For instance, let

us consider the tensor product space H
⌦p
1

⌦
⇣
H

†
1

⌘⌦q

2
Note that alternative notations exist such, as the one used in

Refs. [52, 53].
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body Green’s functions as Nambu tensors and explore
their expansion in terms of un-oriented Feynman dia-
grams. We provide explicit Feynman rules for the time
and energy representations, and give an additional set
of diagrammatic rules to perform Matsubara sums. In
Sec. IV, we explicitly show the connection of this approach

to previously existing formalisms, namely the Gorkov [5]
and Bogoliubov [6] ones. Finally, we summarise the key
points in Sec. V, where we also provide an outlook of
future works.
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In this section, we introduce the notations that under-
pin the Nambu-covariant formalism. We discuss Nambu
fields and define general Nambu tensors in terms of their
transformation properties under a general change of basis.
We provide illustrative examples of such tensors at the
end of this section.

A. Definitions

We consider a many-body system of fermions. The
Fock space F of the many-fermion system is spanned by
the tensor products of a one-body Hilbert space H1 of the
states of a single fermion. Let us define a basis B ⌘ { |bi }
of H1. Indices b, c, . . . are used to denote states within
B.
Since we do not assume the basis to be orthogonal,
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space of H1 is denoted as H
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B̄ = B†.
The creation and annihilation operators associated to

B are denoted as āb and ab, respectively. Here, we chose
the bar notation used in Ref. [57] for the dual basis2. We
stress that, in general, āb = a
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6= a

†
b [57]. Creation and an-

nihilation operators verify the canonical anticommutation
relations

{ āb, āc } = 0 , (2a)

{ ab, ac } = 0 , (2b)
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At this point, considering tensors over H1 and H
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of type (p, q) single-particle tensors. A change of single-
particle basis modifies the coordinates of a type (p, q)
single-particle tensor according to the standard tensor
product representation of the linear group GL(H1). If we
consider the Fock space, the associated representation of
GL(H1) characterising a change of single-particle basis
can be decomposed in the sum of representations over
the N -body Hilbert space HN ⌘ H

⌦N
1

. This is a conse-
quence of the stability of HN with respect to a change of
single-particle basis. For example, if tbc are the compo-
nents of an element of H2 (i.e. of a (2, 0) single-particle
tensor), and U is the invertible matrix representing a
change of single-particle basis, the new components after
changing the single-particle basis read

t
0
bc ⌘

X

de

U
�1

bd U
�1

ce tde . (3)

In practice, working with tensors over GL(H1) allows one
to keep track of how a change of single-particle basis af-
fects a set of components. Tensors also provide a powerful
organising tool to classify contributions to observables,
which must necessarily be invariant with respect to a
change of single-particle basis. Tensorial considerations
can also be used to guide physically motivated approxi-
mations [52, 53]. Unfortunately, the practical advantages
of single-particle tensor algebra cannot be carried over
to the larger group of linear canonical transformations,
namely Bogoliubov transformations [58]. In particular,
the sub-spaces HN are no longer stable with respect to
(the group of) Bogoliubov transformations.

We explore here a more convenient tensor algebra that
arises at the price of extending H1 to a vector space of
double dimension. Such a doubled-dimension vector space
was already introduced in the work of Anderson [10] and
Nambu [11] on symmetry-broken systems. This extended
one-body Hilbert space, H

e
1
, is defined as the product of

the original one-body space and its dual,

H
e
1

⌘ H1 ⇥ H
†
1

. (4)

We define the extended basis Be of H
e
1

as

Be ⌘ B [ B̄ , (5)

where the basis B of H1 and B̄ of H †
1
are to be understood

as the free families B ⇥ {0} and {0} ⇥ B̄, respectively.
Elements of H

e
1

are vectors of the form

✓
| 1i
h 0

1
|

◆
. (6)

This extended one-body Hilbert space is equipped with
the inner product g ( . , . ), defined as

g

✓✓
| 1i
h 0

1
|

◆
,

✓
| 2i
h 0

2
|

◆◆
⌘ h 0

2
| 1i+ h 0

1
| 2i , (7)

which is a non-degenerate symmetric -bilinear form.

It is convenient to re-index elements of Be over a global
index µ ⌘ (b, l), where b denotes states in the space H1

and l 2 {1, 2} is a Nambu index. This index labels a state
of B (l = 1) or of B̄ (l = 2). We define the involution .̄ on
the set of Nambu indices l by

.̄ : 1 7! 1̄ = 2

2 7! 2̄ = 1 , (8)

and we extend it to global indices µ = (b, l) by

µ̄ ⌘ (b, l̄) . (9)

Explicitly, vectors |µi of Be are defined by

|b, 1i ⌘
✓
|bi
0

◆
, (10a)

|b, 2i ⌘
✓

0
h̄b|

◆
. (10b)

The components of the metric gµ⌫ associated to the tensor
algebra generated by the extended one-body Hilbert space
H

e
1

are defined by

gµ⌫ ⌘ g (|µi , |⌫i) . (11)

In the extended basis Be, the metric reads simply

gµ⌫ = �µ⌫̄ , (12)

where �µ⌫ is the Kronecker symbol over global indices.
We have so far introduced new global indices in H

e
1

which, together with a new inner product, will be con-
venient to use when working within the Nambu tensor
algebra. Performing an analogous study on the dual of
H

e
1

gives us the dual components of the metric, gµ⌫ . In
the extended basis Be, these components read

g
µ⌫ = �µ⌫̄ . (13)

Finally, for completeness, we define the mixed components
of the metric, gµ⌫ and gµ

⌫ , by

g
µ
⌫ ⌘

X

�

g
µ�

g�⌫ = �µ⌫ , (14)

gµ
⌫ ⌘

X

�

gµ� g
�⌫ = �µ⌫ . (15)

Creation and annihilation operators are conveniently
grouped in the Nambu fields Aµ and Āµ. These are
defined such that they read in the extended basis Be

A(b,1) ⌘ ab , (16a)

A(b,2) ⌘ āb , (16b)

Ā(b,1) ⌘ āb , (16c)

Ā(b,2) ⌘ ab . (16d)
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Just as in standard tensor algebra, indices in the Nambu
fields can be raised and lowered using the metric

Āµ =
X

⌫

gµ⌫ A⌫
, (17a)

Āµ =
X

⌫

gµ
⌫ Ā⌫ , (17b)

Aµ =
X

⌫

g
µ⌫ Ā⌫ , (17c)

Aµ =
X

⌫

g
µ
⌫ A⌫

. (17d)

The canonical anticommutation rules read

{Aµ
,A⌫ } = g

µ⌫
, (18a)

�
Aµ

, Ā⌫

 
= g

µ
⌫ , (18b)

�
Āµ,A

⌫
 
= gµ

⌫
, (18c)

�
Āµ, Ā⌫

 
= gµ⌫ . (18d)

These expressions indicate that the Nambu formalism
is underpinned by an implicit tensor algebra structure.
We stress that, although the metric and Nambu fields
expressed in Be are quite simple, this is no longer the case
in a general extended basis of H

e
1
. The specific notation

gµ⌫ and Aµ will be particularly useful. Next, we make ex-
plicit the resulting algebra of so-called Nambu tensors and
we relate it to the group of Bogoliubov transformations.

B. Nambu tensors

Nambu tensors are defined as elements of the tensor
algebra T (H e

1
) built over the vector space H

e
1
. Intrinsi-

cally, i.e. without mentioning any basis, a Nambu tensor t
of type (p, q) is a multilinear form over p times the Carte-
sian product of H

e
1

and q times its dual. Equivalently,
one can work directly on the coordinates of a Nambu
(p, q)-tensor t, which are written as

t
µ1...µp

⌫1...⌫q . (19)

For these coordinates to be a (p, q) type Nambu tensor,
they must transform according to the standard tensor
product representation of GL(H e

1
) on T (H e

1
). In other

words, when changing basis, the new coordinates must
read

t
0µ1...µp

⌫1...⌫q ⌘
X

�1...�p
1...q

�
W�1

�µ1

�1
. . .

�
W�1

�µp

�p

⇥ t
�1...�p

1...q W1
⌫1 . . .Wq

⌫q , (20)

where W is an invertible matrix representing the change
of basis of H

e
1
.

Nambu tensors, as defined above, are of great use when
considering general Bogoliubov transformations. A Bo-
goliubov change of basis of the Fock space F is equivalent

to a linear transformation of Nambu fields [57]. In other
words, a Nambu field transforms according to

A0µ =
X

⌫

�
W�1

�µ
⌫
A⌫

, (21a)

Ā0
µ =

X

⌫

W⌫
µ Ā⌫ , (21b)

where A0µ and Ā0
µ are the new Nambu fields3 and Wµ

⌫

are the elements of a g-orthogonal matrix that verifies
X

�

g� W�
µ W

⌫ = gµ⌫ . (22)

This g-orthogonality condition is equivalent to restricting
linear transformations of Nambu fields to those conserving
the canonical anticommutation rules in Eqs. (18).
Mathematically speaking, the group of Bogoliubov

changes of basis of F is isomorphic to the orthogonal
group O(H e

1
, g), namely the group of basis changes of H e

1

preserving the inner product g defined in Eq. (7). The
e↵ect of a Bogoliubov change of basis of F on Nambu
tensors is represented by the standard tensor product
representation of O(H e

1
, g) on T (H e

1
). In particular,

the spaces of (p, q)-Nambu tensors are stable with re-
spect to that action and their coordinates transform as
in Eq. (20) but with W a matrix that now characterises
the Bogoliubov transformation. Similarly, the e↵ect of a
single-particle change of basis of F on Nambu tensors is
represented by the standard tensor product representation
of GL(H1) on T (H e

1
).

As it is common in the theory of tensor algebra, a
Nambu (p, q)-tensor will be said to have p contravariant
and q covariant indices. Contravariant and covariant
indices are respectively represented by upper and lower
indices. We note that covariance (contravariance) is here
to be understood with respect to a change of basis of H

e
1
.

Since

GL(H1) ⇢ O(H e
1
, g) ⇢ GL(H e

1
) , (23)

the covariance (contravariance) remains valid for single-
particle and Bogoliubov transformations. Let us stress
that GL(H e

1
) also contains non-canonical transformations

which modify the components of the metric gµ⌫ i.e. the
inclusions in Eq. (23) are strict. An example of such
transformation will be discussed in Sec. IV.

Whenever there is possible ambiguity, we refer to single-
particle, Bogoliubov and Nambu covariance (contravari-
ance) to distinguish between the specific group of trans-
formations. In the remainder of this work, we will be
mostly concerned with Nambu tensors of a certain type.
We stress that such tensors are the cornerstone allowing
us to easily prove our equations to be either contravariant
or covariant with respect to GL(H e

1
) and, as a sub-case,

to any Bogoliubov transformation.

3
Note that in a general extended basis Be0

, the Nambu fields are

general linear combinations of creation and annihilation operators,

unlike the specific case given in Eqs. (16).

(covariant)(contravariant)
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These expressions indicate that the Nambu formalism
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We stress that, although the metric and Nambu fields
expressed in Be are quite simple, this is no longer the case
in a general extended basis of H
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. The specific notation
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cally, i.e. without mentioning any basis, a Nambu tensor t
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�p

⇥ t
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⌫q , (20)

where W is an invertible matrix representing the change
of basis of H

e
1
.

Nambu tensors, as defined above, are of great use when
considering general Bogoliubov transformations. A Bo-
goliubov change of basis of the Fock space F is equivalent

to a linear transformation of Nambu fields [57]. In other
words, a Nambu field transforms according to
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changes of basis of F is isomorphic to the orthogonal
group O(H e

1
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preserving the inner product g defined in Eq. (7). The
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tensors is represented by the standard tensor product
representation of O(H e
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). In particular,
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spect to that action and their coordinates transform as
in Eq. (20) but with W a matrix that now characterises
the Bogoliubov transformation. Similarly, the e↵ect of a
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represented by the standard tensor product representation
of GL(H1) on T (H e
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).

As it is common in the theory of tensor algebra, a
Nambu (p, q)-tensor will be said to have p contravariant
and q covariant indices. Contravariant and covariant
indices are respectively represented by upper and lower
indices. We note that covariance (contravariance) is here
to be understood with respect to a change of basis of H
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.

Since
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the covariance (contravariance) remains valid for single-
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that GL(H e

1
) also contains non-canonical transformations

which modify the components of the metric gµ⌫ i.e. the
inclusions in Eq. (23) are strict. An example of such
transformation will be discussed in Sec. IV.

Whenever there is possible ambiguity, we refer to single-
particle, Bogoliubov and Nambu covariance (contravari-
ance) to distinguish between the specific group of trans-
formations. In the remainder of this work, we will be
mostly concerned with Nambu tensors of a certain type.
We stress that such tensors are the cornerstone allowing
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of type (p, q) single-particle tensors. A change of single-
particle basis modifies the coordinates of a type (p, q)
single-particle tensor according to the standard tensor
product representation of the linear group GL(H1). If we
consider the Fock space, the associated representation of
GL(H1) characterising a change of single-particle basis
can be decomposed in the sum of representations over
the N -body Hilbert space HN ⌘ H

⌦N
1

. This is a conse-
quence of the stability of HN with respect to a change of
single-particle basis. For example, if tbc are the compo-
nents of an element of H2 (i.e. of a (2, 0) single-particle
tensor), and U is the invertible matrix representing a
change of single-particle basis, the new components after
changing the single-particle basis read

t
0
bc ⌘

X

de

U
�1

bd U
�1

ce tde . (3)

In practice, working with tensors over GL(H1) allows one
to keep track of how a change of single-particle basis af-
fects a set of components. Tensors also provide a powerful
organising tool to classify contributions to observables,
which must necessarily be invariant with respect to a
change of single-particle basis. Tensorial considerations
can also be used to guide physically motivated approxi-
mations [52, 53]. Unfortunately, the practical advantages
of single-particle tensor algebra cannot be carried over
to the larger group of linear canonical transformations,
namely Bogoliubov transformations [58]. In particular,
the sub-spaces HN are no longer stable with respect to
(the group of) Bogoliubov transformations.

We explore here a more convenient tensor algebra that
arises at the price of extending H1 to a vector space of
double dimension. Such a doubled-dimension vector space
was already introduced in the work of Anderson [10] and
Nambu [11] on symmetry-broken systems. This extended
one-body Hilbert space, H

e
1
, is defined as the product of

the original one-body space and its dual,
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e
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†
1

. (4)

We define the extended basis Be of H
e
1

as

Be ⌘ B [ B̄ , (5)

where the basis B of H1 and B̄ of H †
1
are to be understood
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which is a non-degenerate symmetric -bilinear form.

It is convenient to re-index elements of Be over a global
index µ ⌘ (b, l), where b denotes states in the space H1

and l 2 {1, 2} is a Nambu index. This index labels a state
of B (l = 1) or of B̄ (l = 2). We define the involution .̄ on
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2 7! 2̄ = 1 , (8)

and we extend it to global indices µ = (b, l) by
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Explicitly, vectors |µi of Be are defined by
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The components of the metric gµ⌫ associated to the tensor
algebra generated by the extended one-body Hilbert space
H
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are defined by

gµ⌫ ⌘ g (|µi , |⌫i) . (11)

In the extended basis Be, the metric reads simply

gµ⌫ = �µ⌫̄ , (12)

where �µ⌫ is the Kronecker symbol over global indices.
We have so far introduced new global indices in H
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1

which, together with a new inner product, will be con-
venient to use when working within the Nambu tensor
algebra. Performing an analogous study on the dual of
H

e
1

gives us the dual components of the metric, gµ⌫ . In
the extended basis Be, these components read
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Finally, for completeness, we define the mixed components
of the metric, gµ⌫ and gµ
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Creation and annihilation operators are conveniently
grouped in the Nambu fields Aµ and Āµ. These are
defined such that they read in the extended basis Be

A(b,1) ⌘ ab , (16a)

A(b,2) ⌘ āb , (16b)

Ā(b,1) ⌘ āb , (16c)

Ā(b,2) ⌘ ab . (16d)
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C. Elementary examples

Having defined Nambu tensors formally in the previ-
ous subsection, we now provide a series of illustrative
examples. We focus on practical applications of Nambu
tensor algebra, which pave the way for the formal and
diagrammatic developments that follow.

1. Basic Nambu tensors

We start by looking at a key tensor, the metric. We have
so far introduced four metric objects, i.e. gµ⌫ , gµ⌫ , gµ

⌫ and
gµ⌫ . In our notation, these represent the coordinates of
tensors of type (2, 0), (1, 1), (1, 1) and (0, 2), respectively.
Similarly to other tensor algebras, basis transformations
can also be describe as tensors. The matrix elements of a
change of extended basis, Wµ

⌫ , can be considered as the
coordinates of a (1, 1)-tensor.
We now consider an arbitrary k-body operator, O in

terms of Nambu tensors. O can be represented by a (p, q)-
tensor, so long as p+ q = 2k. For instance, in the case
where p = k and q = k, the mixed (k, k) representation
of O reads

O ⌘
X

µ1...µk
⌫1...⌫k

o
µ1...µk

⌫1...⌫k Āµ1 . . . ĀµkA
⌫1 . . .A⌫k , (24)

where o
µ1...µk

⌫1...⌫k are the coordinates of a (k, k)-tensor.
Equivalently, a fully covariant representation of the same
operator O reads

O ⌘
X

µ1...µ2k

oµ1...µ2k Aµ1 . . .Aµ2k , (25)

where oµ1...µ2k are now the coordinates of a (0, 2k)-tensor.
Finally, the fully contravariant representation reads

O ⌘
X

µ1...µ2k

o
µ1...µ2k Āµ1 . . . Āµ2k , (26)

where oµ1...µ2k are coordinates of a (2k, 0)-tensor. We can
use the index raising and lowering operations in Eqs. (17)
to relate the coordinates of the di↵erent types of tensors,

oµ1...µ2k =
X

↵1...↵k

gµ1↵1 . . . gµk↵k o
↵1...↵k

µk+1...µ2k ,

(27a)

o
µ1...µ2k =

X

↵1...↵k

o
µ1...µk

↵1...↵k g
↵1µk+1 . . . g

↵kµ2k .

(27b)

2. Building new Nambu tensors

We now turn our attention to a series of additional
tensor operations that will be necessary in our deriva-
tions. In particular, we discuss here transpositions, linear
combinations, tensor products and tensor contractions.

Let us first start with transpositions, which essentially
correspond to a di↵erent reordering of the indices. For
example, in the case of the (1, 1)- and (0, 2)-tensors of
coordinates tµ⌫ and sµ⌫ , the only possible transpositions
read:

�
t
T
�
µ

⌫ ⌘ t
⌫
µ , (28a)

�
s
T
�
µ⌫

⌘ s⌫µ . (28b)

Note that the contravariant or covariant character of the
indices is kept by transpositions. Using this transposition
together with the raising and lowering of indices given in
Eqs. (27), the g-orthogonality condition in Eq. (22) reads
simply,

X

�

(WT)µ� W�
⌫ = g

µ
⌫ . (29)

We now turn our attention to linear combinations. The
space of tensors of a fixed type is a vector space. As such,
tensors of the same type can be linearly combined while
keeping the tensorial structure intact. For example, the
(anti)symmetrisation of a tensor gives back a tensor of
the same type. We note, however, that contravariant and
covariant indices must be (anti)symmetrised separately.
Consider, for instance, the coordinates

o
[µ1...µk]

(⌫1...⌫k)
, (30)

which define a new (k, k)-tensor based on the original
components of Eq. (24). The bracketed indices correspond
to the shorthand notations for (anti)symmetrisation

t[µ1...µp]µp+1... ⌘
1

p!

X

�2Sp

✏(�) tµ�(1)...µ�(p)µp+1... , (31)

t(µ1...µp)µp+1... ⌘
1

p!

X

�2Sp

tµ�(1)...µ�(p)µp+1... , (32)

where Sp is the symmetric group of order p and ✏(�) the
signature of the permutation �. Eq. (30) thus corresponds
to a new (k, k) tensor which is (anti)symmetric in its
(contravariant) covariant indices. In contrast, if t is a
(1, 1)-tensor, the quantity

t
µ
⌫ + t

⌫
µ

2
(33)

does not define a new tensor. The ⌫ index is covariant
in the first term but contravariant in the second one. As
a result, the sum of both behaves neither covariantly
nor contravariantly with respect to a change of extended
basis.
Finally, new tensors can also be built via tensor net-

works, i.e. via a combination of tensor products and tensor
contractions of previously existing tensors. For example,
let t

µ1⌫1 and sµ2
⌫2 be the coordinates of two tensors of

type (0, 2) and (1, 1), respectively. The coordinates of
their tensor product

r
µ1⌫1

µ2

⌫2 ⌘ t
µ1⌫1 sµ2

⌫2 (34)

(covariant)

(contravariant)

(mixed)
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µ1⌫1 sµ2

⌫2 (34)
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C. Elementary examples

Having defined Nambu tensors formally in the previ-
ous subsection, we now provide a series of illustrative
examples. We focus on practical applications of Nambu
tensor algebra, which pave the way for the formal and
diagrammatic developments that follow.

1. Basic Nambu tensors

We start by looking at a key tensor, the metric. We have
so far introduced four metric objects, i.e. gµ⌫ , gµ⌫ , gµ

⌫ and
gµ⌫ . In our notation, these represent the coordinates of
tensors of type (2, 0), (1, 1), (1, 1) and (0, 2), respectively.
Similarly to other tensor algebras, basis transformations
can also be describe as tensors. The matrix elements of a
change of extended basis, Wµ

⌫ , can be considered as the
coordinates of a (1, 1)-tensor.
We now consider an arbitrary k-body operator, O in

terms of Nambu tensors. O can be represented by a (p, q)-
tensor, so long as p+ q = 2k. For instance, in the case
where p = k and q = k, the mixed (k, k) representation
of O reads

O ⌘
X

µ1...µk
⌫1...⌫k

o
µ1...µk

⌫1...⌫k Āµ1 . . . ĀµkA
⌫1 . . .A⌫k , (24)

where o
µ1...µk

⌫1...⌫k are the coordinates of a (k, k)-tensor.
Equivalently, a fully covariant representation of the same
operator O reads

O ⌘
X

µ1...µ2k

oµ1...µ2k Aµ1 . . .Aµ2k , (25)

where oµ1...µ2k are now the coordinates of a (0, 2k)-tensor.
Finally, the fully contravariant representation reads

O ⌘
X

µ1...µ2k

o
µ1...µ2k Āµ1 . . . Āµ2k , (26)

where oµ1...µ2k are coordinates of a (2k, 0)-tensor. We can
use the index raising and lowering operations in Eqs. (17)
to relate the coordinates of the di↵erent types of tensors,

oµ1...µ2k =
X

↵1...↵k

gµ1↵1 . . . gµk↵k o
↵1...↵k

µk+1...µ2k ,

(27a)

o
µ1...µ2k =

X

↵1...↵k

o
µ1...µk

↵1...↵k g
↵1µk+1 . . . g

↵kµ2k .

(27b)

2. Building new Nambu tensors

We now turn our attention to a series of additional
tensor operations that will be necessary in our deriva-
tions. In particular, we discuss here transpositions, linear
combinations, tensor products and tensor contractions.

Let us first start with transpositions, which essentially
correspond to a di↵erent reordering of the indices. For
example, in the case of the (1, 1)- and (0, 2)-tensors of
coordinates tµ⌫ and sµ⌫ , the only possible transpositions
read:

�
t
T
�
µ

⌫ ⌘ t
⌫
µ , (28a)

�
s
T
�
µ⌫

⌘ s⌫µ . (28b)

Note that the contravariant or covariant character of the
indices is kept by transpositions. Using this transposition
together with the raising and lowering of indices given in
Eqs. (27), the g-orthogonality condition in Eq. (22) reads
simply,

X

�

(WT)µ� W�
⌫ = g

µ
⌫ . (29)

We now turn our attention to linear combinations. The
space of tensors of a fixed type is a vector space. As such,
tensors of the same type can be linearly combined while
keeping the tensorial structure intact. For example, the
(anti)symmetrisation of a tensor gives back a tensor of
the same type. We note, however, that contravariant and
covariant indices must be (anti)symmetrised separately.
Consider, for instance, the coordinates

o
[µ1...µk]

(⌫1...⌫k)
, (30)

which define a new (k, k)-tensor based on the original
components of Eq. (24). The bracketed indices correspond
to the shorthand notations for (anti)symmetrisation

t[µ1...µp]µp+1... ⌘
1

p!

X

�2Sp

✏(�) tµ�(1)...µ�(p)µp+1... , (31)

t(µ1...µp)µp+1... ⌘
1

p!

X

�2Sp

tµ�(1)...µ�(p)µp+1... , (32)

where Sp is the symmetric group of order p and ✏(�) the
signature of the permutation �. Eq. (30) thus corresponds
to a new (k, k) tensor which is (anti)symmetric in its
(contravariant) covariant indices. In contrast, if t is a
(1, 1)-tensor, the quantity

t
µ
⌫ + t

⌫
µ

2
(33)

does not define a new tensor. The ⌫ index is covariant
in the first term but contravariant in the second one. As
a result, the sum of both behaves neither covariantly
nor contravariantly with respect to a change of extended
basis.
Finally, new tensors can also be built via tensor net-

works, i.e. via a combination of tensor products and tensor
contractions of previously existing tensors. For example,
let t

µ1⌫1 and sµ2
⌫2 be the coordinates of two tensors of

type (0, 2) and (1, 1), respectively. The coordinates of
their tensor product

r
µ1⌫1

µ2

⌫2 ⌘ t
µ1⌫1 sµ2

⌫2 (34)

Covariant (contravariant)  
of operators:
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of type (p, q) single-particle tensors. A change of single-
particle basis modifies the coordinates of a type (p, q)
single-particle tensor according to the standard tensor
product representation of the linear group GL(H1). If we
consider the Fock space, the associated representation of
GL(H1) characterising a change of single-particle basis
can be decomposed in the sum of representations over
the N -body Hilbert space HN ⌘ H

⌦N
1

. This is a conse-
quence of the stability of HN with respect to a change of
single-particle basis. For example, if tbc are the compo-
nents of an element of H2 (i.e. of a (2, 0) single-particle
tensor), and U is the invertible matrix representing a
change of single-particle basis, the new components after
changing the single-particle basis read

t
0
bc ⌘

X

de

U
�1

bd U
�1

ce tde . (3)

In practice, working with tensors over GL(H1) allows one
to keep track of how a change of single-particle basis af-
fects a set of components. Tensors also provide a powerful
organising tool to classify contributions to observables,
which must necessarily be invariant with respect to a
change of single-particle basis. Tensorial considerations
can also be used to guide physically motivated approxi-
mations [52, 53]. Unfortunately, the practical advantages
of single-particle tensor algebra cannot be carried over
to the larger group of linear canonical transformations,
namely Bogoliubov transformations [58]. In particular,
the sub-spaces HN are no longer stable with respect to
(the group of) Bogoliubov transformations.

We explore here a more convenient tensor algebra that
arises at the price of extending H1 to a vector space of
double dimension. Such a doubled-dimension vector space
was already introduced in the work of Anderson [10] and
Nambu [11] on symmetry-broken systems. This extended
one-body Hilbert space, H

e
1
, is defined as the product of

the original one-body space and its dual,

H
e
1

⌘ H1 ⇥ H
†
1

. (4)

We define the extended basis Be of H
e
1

as

Be ⌘ B [ B̄ , (5)

where the basis B of H1 and B̄ of H †
1
are to be understood

as the free families B ⇥ {0} and {0} ⇥ B̄, respectively.
Elements of H

e
1

are vectors of the form

✓
| 1i
h 0

1
|

◆
. (6)

This extended one-body Hilbert space is equipped with
the inner product g ( . , . ), defined as

g

✓✓
| 1i
h 0

1
|

◆
,

✓
| 2i
h 0

2
|

◆◆
⌘ h 0

2
| 1i+ h 0

1
| 2i , (7)

which is a non-degenerate symmetric -bilinear form.

It is convenient to re-index elements of Be over a global
index µ ⌘ (b, l), where b denotes states in the space H1

and l 2 {1, 2} is a Nambu index. This index labels a state
of B (l = 1) or of B̄ (l = 2). We define the involution .̄ on
the set of Nambu indices l by

.̄ : 1 7! 1̄ = 2

2 7! 2̄ = 1 , (8)

and we extend it to global indices µ = (b, l) by

µ̄ ⌘ (b, l̄) . (9)

Explicitly, vectors |µi of Be are defined by

|b, 1i ⌘
✓
|bi
0

◆
, (10a)

|b, 2i ⌘
✓

0
h̄b|

◆
. (10b)

The components of the metric gµ⌫ associated to the tensor
algebra generated by the extended one-body Hilbert space
H

e
1

are defined by

gµ⌫ ⌘ g (|µi , |⌫i) . (11)

In the extended basis Be, the metric reads simply

gµ⌫ = �µ⌫̄ , (12)

where �µ⌫ is the Kronecker symbol over global indices.
We have so far introduced new global indices in H

e
1

which, together with a new inner product, will be con-
venient to use when working within the Nambu tensor
algebra. Performing an analogous study on the dual of
H

e
1

gives us the dual components of the metric, gµ⌫ . In
the extended basis Be, these components read

g
µ⌫ = �µ⌫̄ . (13)

Finally, for completeness, we define the mixed components
of the metric, gµ⌫ and gµ

⌫ , by

g
µ
⌫ ⌘

X

�

g
µ�

g�⌫ = �µ⌫ , (14)

gµ
⌫ ⌘

X

�

gµ� g
�⌫ = �µ⌫ . (15)

Creation and annihilation operators are conveniently
grouped in the Nambu fields Aµ and Āµ. These are
defined such that they read in the extended basis Be

A(b,1) ⌘ ab , (16a)

A(b,2) ⌘ āb , (16b)

Ā(b,1) ⌘ āb , (16c)

Ā(b,2) ⌘ ab . (16d)
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of type (p, q) single-particle tensors. A change of single-
particle basis modifies the coordinates of a type (p, q)
single-particle tensor according to the standard tensor
product representation of the linear group GL(H1). If we
consider the Fock space, the associated representation of
GL(H1) characterising a change of single-particle basis
can be decomposed in the sum of representations over
the N -body Hilbert space HN ⌘ H

⌦N
1

. This is a conse-
quence of the stability of HN with respect to a change of
single-particle basis. For example, if tbc are the compo-
nents of an element of H2 (i.e. of a (2, 0) single-particle
tensor), and U is the invertible matrix representing a
change of single-particle basis, the new components after
changing the single-particle basis read

t
0
bc ⌘

X

de

U
�1

bd U
�1

ce tde . (3)

In practice, working with tensors over GL(H1) allows one
to keep track of how a change of single-particle basis af-
fects a set of components. Tensors also provide a powerful
organising tool to classify contributions to observables,
which must necessarily be invariant with respect to a
change of single-particle basis. Tensorial considerations
can also be used to guide physically motivated approxi-
mations [52, 53]. Unfortunately, the practical advantages
of single-particle tensor algebra cannot be carried over
to the larger group of linear canonical transformations,
namely Bogoliubov transformations [58]. In particular,
the sub-spaces HN are no longer stable with respect to
(the group of) Bogoliubov transformations.

We explore here a more convenient tensor algebra that
arises at the price of extending H1 to a vector space of
double dimension. Such a doubled-dimension vector space
was already introduced in the work of Anderson [10] and
Nambu [11] on symmetry-broken systems. This extended
one-body Hilbert space, H

e
1
, is defined as the product of

the original one-body space and its dual,

H
e
1

⌘ H1 ⇥ H
†
1

. (4)

We define the extended basis Be of H
e
1

as

Be ⌘ B [ B̄ , (5)

where the basis B of H1 and B̄ of H †
1
are to be understood

as the free families B ⇥ {0} and {0} ⇥ B̄, respectively.
Elements of H

e
1

are vectors of the form

✓
| 1i
h 0

1
|

◆
. (6)

This extended one-body Hilbert space is equipped with
the inner product g ( . , . ), defined as

g

✓✓
| 1i
h 0

1
|

◆
,

✓
| 2i
h 0

2
|

◆◆
⌘ h 0

2
| 1i+ h 0

1
| 2i , (7)

which is a non-degenerate symmetric -bilinear form.

It is convenient to re-index elements of Be over a global
index µ ⌘ (b, l), where b denotes states in the space H1

and l 2 {1, 2} is a Nambu index. This index labels a state
of B (l = 1) or of B̄ (l = 2). We define the involution .̄ on
the set of Nambu indices l by

.̄ : 1 7! 1̄ = 2

2 7! 2̄ = 1 , (8)

and we extend it to global indices µ = (b, l) by

µ̄ ⌘ (b, l̄) . (9)

Explicitly, vectors |µi of Be are defined by

|b, 1i ⌘
✓
|bi
0

◆
, (10a)

|b, 2i ⌘
✓

0
h̄b|

◆
. (10b)

The components of the metric gµ⌫ associated to the tensor
algebra generated by the extended one-body Hilbert space
H

e
1

are defined by

gµ⌫ ⌘ g (|µi , |⌫i) . (11)

In the extended basis Be, the metric reads simply

gµ⌫ = �µ⌫̄ , (12)

where �µ⌫ is the Kronecker symbol over global indices.
We have so far introduced new global indices in H

e
1

which, together with a new inner product, will be con-
venient to use when working within the Nambu tensor
algebra. Performing an analogous study on the dual of
H

e
1

gives us the dual components of the metric, gµ⌫ . In
the extended basis Be, these components read

g
µ⌫ = �µ⌫̄ . (13)

Finally, for completeness, we define the mixed components
of the metric, gµ⌫ and gµ

⌫ , by

g
µ
⌫ ⌘

X

�

g
µ�

g�⌫ = �µ⌫ , (14)

gµ
⌫ ⌘

X

�

gµ� g
�⌫ = �µ⌫ . (15)

Creation and annihilation operators are conveniently
grouped in the Nambu fields Aµ and Āµ. These are
defined such that they read in the extended basis Be

A(b,1) ⌘ ab , (16a)

A(b,2) ⌘ āb , (16b)

Ā(b,1) ⌘ āb , (16c)

Ā(b,2) ⌘ ab . (16d)
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of type (p, q) single-particle tensors. A change of single-
particle basis modifies the coordinates of a type (p, q)
single-particle tensor according to the standard tensor
product representation of the linear group GL(H1). If we
consider the Fock space, the associated representation of
GL(H1) characterising a change of single-particle basis
can be decomposed in the sum of representations over
the N -body Hilbert space HN ⌘ H

⌦N
1

. This is a conse-
quence of the stability of HN with respect to a change of
single-particle basis. For example, if tbc are the compo-
nents of an element of H2 (i.e. of a (2, 0) single-particle
tensor), and U is the invertible matrix representing a
change of single-particle basis, the new components after
changing the single-particle basis read

t
0
bc ⌘

X

de

U
�1

bd U
�1

ce tde . (3)

In practice, working with tensors over GL(H1) allows one
to keep track of how a change of single-particle basis af-
fects a set of components. Tensors also provide a powerful
organising tool to classify contributions to observables,
which must necessarily be invariant with respect to a
change of single-particle basis. Tensorial considerations
can also be used to guide physically motivated approxi-
mations [52, 53]. Unfortunately, the practical advantages
of single-particle tensor algebra cannot be carried over
to the larger group of linear canonical transformations,
namely Bogoliubov transformations [58]. In particular,
the sub-spaces HN are no longer stable with respect to
(the group of) Bogoliubov transformations.

We explore here a more convenient tensor algebra that
arises at the price of extending H1 to a vector space of
double dimension. Such a doubled-dimension vector space
was already introduced in the work of Anderson [10] and
Nambu [11] on symmetry-broken systems. This extended
one-body Hilbert space, H

e
1
, is defined as the product of

the original one-body space and its dual,

H
e
1

⌘ H1 ⇥ H
†
1

. (4)

We define the extended basis Be of H
e
1

as

Be ⌘ B [ B̄ , (5)

where the basis B of H1 and B̄ of H †
1
are to be understood

as the free families B ⇥ {0} and {0} ⇥ B̄, respectively.
Elements of H

e
1

are vectors of the form

✓
| 1i
h 0

1
|

◆
. (6)

This extended one-body Hilbert space is equipped with
the inner product g ( . , . ), defined as

g

✓✓
| 1i
h 0

1
|

◆
,

✓
| 2i
h 0

2
|

◆◆
⌘ h 0

2
| 1i+ h 0

1
| 2i , (7)

which is a non-degenerate symmetric -bilinear form.

It is convenient to re-index elements of Be over a global
index µ ⌘ (b, l), where b denotes states in the space H1

and l 2 {1, 2} is a Nambu index. This index labels a state
of B (l = 1) or of B̄ (l = 2). We define the involution .̄ on
the set of Nambu indices l by

.̄ : 1 7! 1̄ = 2

2 7! 2̄ = 1 , (8)

and we extend it to global indices µ = (b, l) by

µ̄ ⌘ (b, l̄) . (9)

Explicitly, vectors |µi of Be are defined by

|b, 1i ⌘
✓
|bi
0

◆
, (10a)

|b, 2i ⌘
✓

0
h̄b|

◆
. (10b)

The components of the metric gµ⌫ associated to the tensor
algebra generated by the extended one-body Hilbert space
H

e
1

are defined by

gµ⌫ ⌘ g (|µi , |⌫i) . (11)

In the extended basis Be, the metric reads simply

gµ⌫ = �µ⌫̄ , (12)

where �µ⌫ is the Kronecker symbol over global indices.
We have so far introduced new global indices in H

e
1

which, together with a new inner product, will be con-
venient to use when working within the Nambu tensor
algebra. Performing an analogous study on the dual of
H

e
1

gives us the dual components of the metric, gµ⌫ . In
the extended basis Be, these components read

g
µ⌫ = �µ⌫̄ . (13)

Finally, for completeness, we define the mixed components
of the metric, gµ⌫ and gµ

⌫ , by

g
µ
⌫ ⌘

X

�

g
µ�

g�⌫ = �µ⌫ , (14)

gµ
⌫ ⌘

X

�

gµ� g
�⌫ = �µ⌫ . (15)

Creation and annihilation operators are conveniently
grouped in the Nambu fields Aµ and Āµ. These are
defined such that they read in the extended basis Be

A(b,1) ⌘ ab , (16a)

A(b,2) ⌘ āb , (16b)

Ā(b,1) ⌘ āb , (16c)

Ā(b,2) ⌘ ab . (16d)

Inner product:
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for practical implementations. In other words, there is
no need for a re-derivation of many-body equations when
working with two di↵erent extended bases related by a
Bogoliubov transformation. We expect that these formal
results should be useful in numerical implementations and
associated benchmarking tests.

Second, on numerical aspects, we expect the numerical
code resulting from a direct implementation of formulae
expressed in the Nambu-covariant formalism to be more
computationally e�cient than previous attempts. The
formalism provides compact and factorised expressions,
thus facilitating the implementation and the maintenance
of source codes. As we discuss later, from a computa-
tional e�ciency perspective, the equations derived in this
formalism expose more clearly a source of parallelisation.
The formalism reduces the number of Feynman diagrams
whose evaluation transparently translates into a Nambu
tensor network. Compared to the evaluation of a mul-
titude of single-particle tensor networks, we expect a
greater gain when using massively parallel hardware with
algorithms specifically designed for this kind of architec-
ture [55, 56].
Last, we stress that the Nambu-covariant formalism

may also be useful in the development of automated
pipelines. The formalism does not only reduce the num-
ber of diagrams, which would no doubt speed up auto-
mated diagrammatic generation tools, but also removes
any consideration in terms of orientations. We expect
this to bring a substantial advantage in terms of memory
processing and practical implementation.

The formalism developed in this paper is entirely equiv-
alent to any of the previous formulations. In principle,
a perfectly e�cient numerical implementation might not
benefit from it. Similarly, fully factorised and simpli-
fied formal many-body equations can also be derived in
existing formalisms. Our claim is, however, that the
Nambu-covariant formalism presented here provides a key
to uncover sources of formal simplifications and general-
isations. We also expect it will lead to new numerical
optimisations in the implementation of many-body ap-
proximations. Hopefully, this formalism can benefit other
many-body practitioners. In this paper, we present the
key aspects of the Nambu-covariant formalism and its
application to perturbation theory. In Part II, we will
discuss the application of the Nambu-covariant formalism
to many-body approximations based on self-consistently
dressed propagators and vertices.
This paper is organised as follows. We introduce the

essential ideas of Nambu tensors and their relation to Bo-
goliubov transformations in Sec. II. The resulting NCPT,
manifestly covariant with respect to Bogoliubov transfor-
mations, is then discussed in Sec. III. We define many-
body Green’s functions as Nambu tensors and explore
their expansion in terms of un-oriented Feynman dia-
grams. We provide explicit Feynman rules for the time
and energy representations, and give an additional set
of diagrammatic rules to perform Matsubara sums. In
Sec. IV, we explicitly show the connection of this approach

to previously existing formalisms, namely the Gorkov [5]
and Bogoliubov [6] ones. Finally, we summarise the key
points in Sec. V, where we also provide an outlook of
future works.

II. NAMBU TENSOR ALGEBRA

In this section, we introduce the notations that under-
pin the Nambu-covariant formalism. We discuss Nambu
fields and define general Nambu tensors in terms of their
transformation properties under a general change of basis.
We provide illustrative examples of such tensors at the
end of this section.

A. Definitions

We consider a many-body system of fermions. The
Fock space F of the many-fermion system is spanned by
the tensor products of a one-body Hilbert space H1 of the
states of a single fermion. Let us define a basis B ⌘ { |bi }
of H1. Indices b, c, . . . are used to denote states within
B.
Since we do not assume the basis to be orthogonal,

it is convenient to introduce the associated dual basis
B̄ ⌘

� ⌦
b̄
��  such that B and B̄ verify the biorthogonality

condition

⌦
b̄
�� c
↵
= �bc , (1)

where �bc denotes the usual Kronecker symbol. The dual
space of H1 is denoted as H

†
1
. For any basis B of H1,

we define the Hermitian conjugated basis B† ⌘ { hb| } of
H

†
1
. In the special case where B is orthonormal, we have

B̄ = B†.
The creation and annihilation operators associated to

B are denoted as āb and ab, respectively. Here, we chose
the bar notation used in Ref. [57] for the dual basis2. We
stress that, in general, āb = a

†
b̄
6= a

†
b [57]. Creation and an-

nihilation operators verify the canonical anticommutation
relations

{ āb, āc } = 0 , (2a)

{ ab, ac } = 0 , (2b)

{ āb, ac } = �bc . (2c)

At this point, considering tensors over H1 and H
†
1

would give us the standard single-particle tensor algebra,
which has been studied and applied in the context of
quantum chemistry in Refs. [52, 53]. For instance, let

us consider the tensor product space H
⌦p
1

⌦
⇣
H

†
1

⌘⌦q

2
Note that alternative notations exist such, as the one used in

Refs. [52, 53].
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results should be useful in numerical implementations and
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may also be useful in the development of automated
pipelines. The formalism does not only reduce the num-
ber of diagrams, which would no doubt speed up auto-
mated diagrammatic generation tools, but also removes
any consideration in terms of orientations. We expect
this to bring a substantial advantage in terms of memory
processing and practical implementation.

The formalism developed in this paper is entirely equiv-
alent to any of the previous formulations. In principle,
a perfectly e�cient numerical implementation might not
benefit from it. Similarly, fully factorised and simpli-
fied formal many-body equations can also be derived in
existing formalisms. Our claim is, however, that the
Nambu-covariant formalism presented here provides a key
to uncover sources of formal simplifications and general-
isations. We also expect it will lead to new numerical
optimisations in the implementation of many-body ap-
proximations. Hopefully, this formalism can benefit other
many-body practitioners. In this paper, we present the
key aspects of the Nambu-covariant formalism and its
application to perturbation theory. In Part II, we will
discuss the application of the Nambu-covariant formalism
to many-body approximations based on self-consistently
dressed propagators and vertices.
This paper is organised as follows. We introduce the

essential ideas of Nambu tensors and their relation to Bo-
goliubov transformations in Sec. II. The resulting NCPT,
manifestly covariant with respect to Bogoliubov transfor-
mations, is then discussed in Sec. III. We define many-
body Green’s functions as Nambu tensors and explore
their expansion in terms of un-oriented Feynman dia-
grams. We provide explicit Feynman rules for the time
and energy representations, and give an additional set
of diagrammatic rules to perform Matsubara sums. In
Sec. IV, we explicitly show the connection of this approach

to previously existing formalisms, namely the Gorkov [5]
and Bogoliubov [6] ones. Finally, we summarise the key
points in Sec. V, where we also provide an outlook of
future works.

II. NAMBU TENSOR ALGEBRA

In this section, we introduce the notations that under-
pin the Nambu-covariant formalism. We discuss Nambu
fields and define general Nambu tensors in terms of their
transformation properties under a general change of basis.
We provide illustrative examples of such tensors at the
end of this section.

A. Definitions

We consider a many-body system of fermions. The
Fock space F of the many-fermion system is spanned by
the tensor products of a one-body Hilbert space H1 of the
states of a single fermion. Let us define a basis B ⌘ { |bi }
of H1. Indices b, c, . . . are used to denote states within
B.
Since we do not assume the basis to be orthogonal,

it is convenient to introduce the associated dual basis
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� ⌦
b̄
��  such that B and B̄ verify the biorthogonality

condition

⌦
b̄
�� c
↵
= �bc , (1)

where �bc denotes the usual Kronecker symbol. The dual
space of H1 is denoted as H

†
1
. For any basis B of H1,

we define the Hermitian conjugated basis B† ⌘ { hb| } of
H

†
1
. In the special case where B is orthonormal, we have

B̄ = B†.
The creation and annihilation operators associated to

B are denoted as āb and ab, respectively. Here, we chose
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stress that, in general, āb = a

†
b̄
6= a

†
b [57]. Creation and an-

nihilation operators verify the canonical anticommutation
relations
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{ ab, ac } = 0 , (2b)

{ āb, ac } = �bc . (2c)

At this point, considering tensors over H1 and H
†
1

would give us the standard single-particle tensor algebra,
which has been studied and applied in the context of
quantum chemistry in Refs. [52, 53]. For instance, let

us consider the tensor product space H
⌦p
1

⌦
⇣
H

†
1

⌘⌦q

2
Note that alternative notations exist such, as the one used in

Refs. [52, 53].
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of type (p, q) single-particle tensors. A change of single-
particle basis modifies the coordinates of a type (p, q)
single-particle tensor according to the standard tensor
product representation of the linear group GL(H1). If we
consider the Fock space, the associated representation of
GL(H1) characterising a change of single-particle basis
can be decomposed in the sum of representations over
the N -body Hilbert space HN ⌘ H

⌦N
1

. This is a conse-
quence of the stability of HN with respect to a change of
single-particle basis. For example, if tbc are the compo-
nents of an element of H2 (i.e. of a (2, 0) single-particle
tensor), and U is the invertible matrix representing a
change of single-particle basis, the new components after
changing the single-particle basis read

t
0
bc ⌘

X

de

U
�1

bd U
�1

ce tde . (3)

In practice, working with tensors over GL(H1) allows one
to keep track of how a change of single-particle basis af-
fects a set of components. Tensors also provide a powerful
organising tool to classify contributions to observables,
which must necessarily be invariant with respect to a
change of single-particle basis. Tensorial considerations
can also be used to guide physically motivated approxi-
mations [52, 53]. Unfortunately, the practical advantages
of single-particle tensor algebra cannot be carried over
to the larger group of linear canonical transformations,
namely Bogoliubov transformations [58]. In particular,
the sub-spaces HN are no longer stable with respect to
(the group of) Bogoliubov transformations.

We explore here a more convenient tensor algebra that
arises at the price of extending H1 to a vector space of
double dimension. Such a doubled-dimension vector space
was already introduced in the work of Anderson [10] and
Nambu [11] on symmetry-broken systems. This extended
one-body Hilbert space, H

e
1
, is defined as the product of

the original one-body space and its dual,

H
e
1

⌘ H1 ⇥ H
†
1

. (4)

We define the extended basis Be of H
e
1

as

Be ⌘ B [ B̄ , (5)

where the basis B of H1 and B̄ of H †
1
are to be understood

as the free families B ⇥ {0} and {0} ⇥ B̄, respectively.
Elements of H

e
1

are vectors of the form

✓
| 1i
h 0

1
|

◆
. (6)

This extended one-body Hilbert space is equipped with
the inner product g ( . , . ), defined as

g

✓✓
| 1i
h 0

1
|

◆
,

✓
| 2i
h 0

2
|

◆◆
⌘ h 0

2
| 1i+ h 0

1
| 2i , (7)

which is a non-degenerate symmetric -bilinear form.

It is convenient to re-index elements of Be over a global
index µ ⌘ (b, l), where b denotes states in the space H1

and l 2 {1, 2} is a Nambu index. This index labels a state
of B (l = 1) or of B̄ (l = 2). We define the involution .̄ on
the set of Nambu indices l by

.̄ : 1 7! 1̄ = 2

2 7! 2̄ = 1 , (8)

and we extend it to global indices µ = (b, l) by

µ̄ ⌘ (b, l̄) . (9)

Explicitly, vectors |µi of Be are defined by

|b, 1i ⌘
✓
|bi
0

◆
, (10a)

|b, 2i ⌘
✓

0
h̄b|

◆
. (10b)

The components of the metric gµ⌫ associated to the tensor
algebra generated by the extended one-body Hilbert space
H

e
1

are defined by

gµ⌫ ⌘ g (|µi , |⌫i) . (11)

In the extended basis Be, the metric reads simply

gµ⌫ = �µ⌫̄ , (12)

where �µ⌫ is the Kronecker symbol over global indices.
We have so far introduced new global indices in H

e
1

which, together with a new inner product, will be con-
venient to use when working within the Nambu tensor
algebra. Performing an analogous study on the dual of
H

e
1

gives us the dual components of the metric, gµ⌫ . In
the extended basis Be, these components read

g
µ⌫ = �µ⌫̄ . (13)

Finally, for completeness, we define the mixed components
of the metric, gµ⌫ and gµ

⌫ , by

g
µ
⌫ ⌘

X

�

g
µ�

g�⌫ = �µ⌫ , (14)

gµ
⌫ ⌘

X

�

gµ� g
�⌫ = �µ⌫ . (15)

Creation and annihilation operators are conveniently
grouped in the Nambu fields Aµ and Āµ. These are
defined such that they read in the extended basis Be

A(b,1) ⌘ ab , (16a)

A(b,2) ⌘ āb , (16b)

Ā(b,1) ⌘ āb , (16c)

Ā(b,2) ⌘ ab . (16d)
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other
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FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
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FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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FIG. 4. The same as Fig. 3 for the diagram G3. For this
diagram, there are eight distinct spanning trees.

numerators and denominators of each contribution read

A1 :
f(�✏n2)f(�✏n3)f(�✏n)

[�i!m + ✏n1 � ✏n2 � ✏n][�i!m + ✏n4 � ✏n3 � ✏n]
,

(80a)

A2 :
f(�✏n1)f(�✏n3)f(�✏n)

[i!m + ✏n2 � ✏n1 + ✏n][�i!m + ✏n4 � ✏n3 � ✏n]
,

(80b)

A3 :
f(�✏n2)f(�✏n4)f(�✏n)

[�i!m + ✏n1 � ✏n2 � ✏n][i!m + ✏n3 � ✏n4 + ✏n]
,

(80c)

A4 :
f(�✏n1)f(�✏n4) (�f(✏n))

[i!m + ✏n2 � ✏n1 + ✏n][i!m + ✏n3 � ✏n4 + ✏n]
,

(80d)

A5 :
f(�✏n4) (�f(✏n3)) f(�✏n2)

[✏n1 � ✏n2 + ✏n3 � ✏n4 ][i!m + ✏n + ✏n3 � ✏n4 ]
,

(80e)

A6 :
f(�✏n1)f(�✏n4)f(�✏n3)

[✏n2 � ✏n1 + ✏n4 � ✏n3 ][i!m + ✏n + ✏n3 � ✏n4 ]
,

(80f)

A7 :
f(�✏n1) (�f(✏n2)) f(�✏n3)

[✏n4 � ✏n3 + ✏n2 � ✏n1 ][i!m + ✏n + ✏n2 � ✏n1 ]
,

(80g)

A8 :
f(�✏n1)f(�✏n2)f(�✏n4)

[✏n3 � ✏n4 + ✏n1 � ✏n2 ][i!m + ✏n + ✏n2 � ✏n1 ]
.

(80h)

The resulting total Matsubara sum reads,

I (G3) =
X

n1 n2 n3
n4 n

X
(n1)�

0
1X̄

(n1)�
00
1 X

(n2)�
00
2 X̄

(n2)�
0
2

⇥X
(n3)�
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(81)

where denominators have been factorised as done in the
second-order case.
The second diagram contributing at third order is a

self-energy insertion (that is, of non-skeleton type) and it
to be considered two-particle reducible for the application
of Gaudin’s summation rules of Sec. III D. It is indicated
by G

0
3
in Fig. 2. The associated Feynman amplitude
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FIG. 3. Top: second-order labelled diagram G2 contributing
to the propagator. The chosen orientations and strengths are
given explicitly. We recall that, by convention, the energy flows
positively when following the chosen orientation convention
(without taking into account the chosen intensities). Bottom:
the three spanning trees of internal lines are shown with bold
blue lines. Thin black lines are part of the corresponding
complementary diagrams.

at second order reads
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The orientation of the energy flow is explicitly shown in
the top diagram of Fig. 3. The Matsubara sum I (G2) is
defined by
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Applying Gaudin’s summation rules as given in Sec. III D
and App. C, I (G2) reads

I (G2) =
X
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(78)

Eq. (78) is obtained as the sum of the amplitudes associ-
ated to the three spanning trees (bold blue lines) shown
in the bottom of Fig. 3. Note that all three trees con-
tribute with the same denominator, which is why only
one factorised denominator appears in Eq. (78).

3. Third order perturbations

The simplifications obtained with NCPT become more
important as one considers higher perturbative orders.
To give a clear illustration, we derive the Feynman ampli-
tudes contributing to the contravariant one-body Green’s
function at third order. We start with the contribution
of the 2PI diagram G3 of Fig. 2. The Feynman amplitude
�Aµ⌫

(3)
(!m) contributing to Gµ⌫(!m) in this case reads
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where I (G3) is the Matsubara sum associated to G3, as de-
fined in Eq. (65). The Matsubara sum is computed using
Gaudin’s summation rules. There are eight spanning trees
within G3 which are identified in Fig. 4. The associated

Just ONE topology at 2nd and 3rd order! 

(2-body forces only)  

For three-nucleon forces: 

1 new topology (2nd order) and 7 (3rd) 
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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! 3NF crucial for reproducing binding energies and driplines around oxygen 

!  cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)

 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 
and  Phys. Rev. C 92, 014306 (2015)

Results for the N-O-F chains
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
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scattering states.
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FIG. 9. (Color online) Diagonal part of the complete proton
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scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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FIG. 8. Same as Fig. 7 but for calcium isotopes. Values for the
recently measured masses of 55−57Ca were taken from Ref. [91]. The
estimated computational errors due to model space truncations are
≈1% of the total binding energy for NNLOsat and 0.5% for NN+
3N(lnl) and NN+ 3N (400).

all even-even isotopes, are shown together with ADC(3)
calculations in doubly closed-shell nuclei (colored horizontal
bars) and compared to available experimental data (black
points). Corresponding two-neutron separation energies are
shown in Figs. 7(b), 8(b) and 9(b). Following the analysis
of Secs. IV B and IV C, model-space convergence errors for
NNLOsat [NN + 3N(lnl)] are estimated to be at most 1%
(0.5%) of the total binding energy up to the calcium isotopes
and 2% (1%) for the nickels up to 68Ni. Many-body trunca-
tion errors are 4% for ADC(2) and below 1% for ADC(3),
generally underestimating the binding energy. Uncertainties
for NN + 3N (400) are the same as for NN + 3N(lnl).

All three interactions yield similar results for ground-state
energies of the oxygen isotopes and are generally close to ex-
perimental values. While for NN + 3N (400) and NNLOsat the
agreement is excellent through the whole chain, NN + 3N(lnl)
shows some mild underbinding for the most neutron-rich
systems. Although additional correlations coming in at the
ADC(3) level tend to provide additional binding, one notices
that this effect is not large in oxygen. For all interactions,
the dripline at 24O is correctly reproduced, as also visible
in Fig. 7(b). For the model space parameters used here, the
two N3LO Hamiltonians predict 28O to be less bound than
26O, while the opposite is found for NNLOsat. However, we
find that computed ground-state energies for the unbound 28O
depend sensibly on emax and h̄! which is consistent with a
discretization of the continuum imposed by the HO space. For

FIG. 9. Same as Fig. 7 but for nickel isotopes. The estimated
computational errors due to model space truncations are below 2% of
the total binding energy for NNLOsat and below 1% for NN+ 3N(lnl)
and NN+ 3N (400). Note that the ADC(3) truncation accounts for
an additional 2–3% of the total binding energies with respect to
ADC(2), for all interactions throughout this chain.

heavier systems like calcium and nickel, the NN + 3N (400)
Hamiltonian is known to produce strong overbinding with
respect to experimental data [28,29]. This is confirmed by
present calculations as visible in Figs. 8(a) and 9(a). Instead,
one notices that the two most recent Hamiltonians, NNLOsat
and NN + 3N(lnl), largely correct for this overbinding. For
instance, on the light-mass side, the ADC(2) energy for 36Ca
goes from 20.4 MeV (7.2%) overbinding for NN + 3N (400)
to 11.8 MeV (4.1%) underbinding for NNLOsat and 7.0 MeV
(2.4%) underbinding for NN + 3N(lnl). Among the heav-
ier isotopes, 68Ni goes from 64.8 MeV (10.9%) overbind-
ing for NN + 3N (400) to 45.0 MeV (7.6%) underbinding
for NNLOsat and 15.9 MeV (2.6%) underbinding for NN +
3N(lnl).

Many-body correlations beyond ADC(2) provide addi-
tional binding and ground-state energies of all considered
isotopes are lower by 2–3% when switching to ADC(3).
While this aggravates the overbinding of NN + 3N (400) [28],
it is expected to reduce the underbinding of the other two
potentials. The latter expectation is corroborated by ADC(3)
results of closed-shell nuclei along the two chains. Once
ADC(3) corrections are included, binding energies computed
with both NNLOsat and NN + 3N(lnl) Hamiltonians are in
excellent agreement with experimental data. For the above
examples, differences with experiment reduce to 0.9% and
0.2% in 36Ca and to 4.2% and 0.05% in 68Ni for NNLOsat
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Fig. 13 Changes in m.s. charge radii for argon, calcium, titanium and
chromium relative to N = 28. Results obtained with the NNLOsat
Hamiltonian (coloured symbols and solid lines) are compared to exist-
ing experimental data [69–71] (grey symbols and dashed lines). In the
inset, changes in m.s. charge radii relative to N = 34 are shown for
argon isotopes. To guide the eye, the linear trend extrapolated from
N = 28−32 is shown as a dashed line

25) and iron (Z = 26), for which experimental data are
available, also follow this trend. The same behaviour, with a
kink followed by a steep rise essentially independent of Z ,
is found at the N = 50 and N = 82 magic numbers [80].
Remarkably, the theoretical curves capture this basic feature,
yielding radii that increase almost independently of Z beyond
N = 28. As already stressed, however, the slope is less steep
than the experimental one, which represents a challenge for
most of nuclear structure calculations. Let us notice that,
interestingly, a similar universal behaviour is observed for
NN+3N (lnl) Hamiltonian, although with a shallower slope
than for NNLOsat.

Furthermore, a second, less pronounced kink is visible
at N = 34, most strongly for argon (see inset of Fig. 13).
The kink fades away with increasing proton number, and is
basically absent for chromium that displays a straight linear
trend from N = 32 to N = 40. Also in this case, similar
features are observed in the charge radii computed with the
NN+3N (lnl) Hamiltonian. This behaviour suggests that a
(weak) shell closure develops at N = 34 for neutron-rich
nuclei around Z = 20. This observation is consistent with
the evolution of the N = 34 neutron gaps computed with
NN+3N (lnl) and shown in Fig. 6d. On the experimental side,
the recent measurement of a relatively high value of the 2+1
excitation energy in 52Ar [85] and the analysis of quasifree
neutron knockout from 54Ca [86] also support this picture.

To conclude the present section, some examples of charge
density distributions in chromium isotopes are shown in
Fig. 14. Theoretically, the charge distribution is computed
as a sum of three terms [87–89]

Fig. 14 Charge density distributions of three chromium isotopes.
NNLOsat calculations are compared to density profiles determined via
electron scattering [92]. Curves relative to 50Cr and 54Cr (both experi-
ment and theory) have been rescaled by a factor 0.8 and 1.2 respectively
for better readability

ρch(r) = ρ
p
ch(r)+ ρn

ch(r)+ ρls
ch(r), (8)

where ρ
p
ch (ρn

ch) is determined by folding the point-proton
(point-neutron) density with the finite charge distribution of
the proton (neutron) and ρls

ch is a relativistic spin-orbit cor-
rection. In addition, centre-of-mass and relativistic Darwin-
Foldy corrections are taken into account by employing an
effective position variable following Ref. [90]. Note that
centre-of-mass corrections anyway decrease with increas-
ing mass number. Ref. [91] used exact Monte Carlo tech-
niques to subtract it from SCGF charge densities obtained
with NNLOsat and found that it is already under control for
A = 16. In Fig. 14 distributions of 50,52,54Cr computed with
NNLOsat are compared to charge profiles determined from
electron scattering cross sections [92]. Theoretical distribu-
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behaviour differ in the nuclear interior, with the calculations
displaying a dip around 1.5 fm that is not present in the exper-
imental distributions. The oscillations observed in the theo-
retical curves are typically interpreted as strong shell effects
that have not been washed out by correlations, and are not
found in other ADC(2) calculations of spherical nuclei in this
mass region (see e.g. 40Ca in Fig. 15 of Ref. [8]). Therefore
this discrepancy could represent another possible signature
of missing correlations when the present approach is applied
to deformed systems. Notice that this qualitative behaviour
persists for 52Cr, in spite of the fact that its value of rch slightly
departs from experiment.
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become truly collective, i.e. as one moves significantly away
from semi-magic systems.

3.5 Effects of deformation

For several of the quantities discussed above, the poorer
agreement with theoretical data when departing from semi-
magic calcium has been ascribed to an inefficient description
of quadrupole correlations. To substantiate this observation,
differences between computed and experimental ground-
state energies per nucleon are displayed in Fig. 8 for four

isotopic chains. The best agreement with experimental val-
ues is found for calcium isotopes. Other chains perform gen-
erally worse, with the quality of the description deteriorating
in particular for neutron-rich argon and chromium isotopes.
In all cases a clear minimum is visible at N = 20 and a max-
imum around N = 24, which suggests a correlation with the
closed- or open-shell character of the neutrons and the asso-
ciated absence or presence of static deformation. ADC(3)
deviations, available for calcium isotopes with sub-shell clo-
sures, are also displayed in the figure. They illustrate the
typical gain achieved by the inclusion of higher-order corre-
lations in semi-magic systems.

The hypothetical correlation with deformation is further
examined in Fig. 9, where the four curves of Fig. 8 are
plotted separately and compared to two different quanti-
ties measuring the effects of deformation in phenomeno-
logical approaches. First, we consider the simple estimate
Np × Nn, where Np (Nn) is the number of valence pro-
ton (neutron) pairs in a mean-field picture. Such a quan-
tity has been shown to provide a good estimate of the so-
called deformation energy in (single-reference) energy den-
sity functional (EDF) calculations [66]. Second, we plot the
actual deformation parameter β obtained in (multi-reference)
EDF calculations [67]. These two estimates of deforma-
tion provide a similar picture throughout the four isotopic
chains. This is consistent with the idea that deformation is
mean-field dominated, with beyond-mean-field correlations
accounting for additional fluctuations on top. Turning to our
results, one observes that the correlation between the theo-
retical error ∆E/A and the two phenomenological estimates
is striking for all chains. The deformation parameter β, with
smoother variations across sub-shell closures, seems to pro-
vide a slightly better account of our theoretical error. An
exception is visible for light argon isotopes, with the mean-
field estimate Np × Nn better capturing the behaviour of
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computed via EDF calculations [67] (empty symbols and dashed lines,
referring to the right vertical axis)
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chains. This is consistent with the idea that deformation is
mean-field dominated, with beyond-mean-field correlations
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sity functional (EDF) calculations [66]. Second, we plot the
actual deformation parameter β obtained in (multi-reference)
EDF calculations [67]. These two estimates of deforma-
tion provide a similar picture throughout the four isotopic
chains. This is consistent with the idea that deformation is
mean-field dominated, with beyond-mean-field correlations
accounting for additional fluctuations on top. Turning to our
results, one observes that the correlation between the theo-
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is striking for all chains. The deformation parameter β, with
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Validated by charge distributions and neutron quasiparticle spectra:

- 34Si is unstable, charge distribution is still unknown 

- Suggested central depletion from mean-field 
simulations 

- Ab-initio theory confirms predictions 

- Other theoretical and experimental evidence: 
Phys. Rev. C 79, 034318 (2009), 
Nature Physics 13, 152–156 (2017).

Duguet, Somà, Lecuse, CB, Navrátil, 
Phys.Rev. C95, 034319 (2017)

Bubble nuclei...   34Si prediction



 d3/2 — s1/2 inversion of protons and bubbles at N=28

Papuga et al., PRL110, 172503 (2013); PRC90, 034321 (2014)
RIKEN, SEASTAR coll., Phys. Lett. B802 135215 (2020) 
Linh, Gillibert, et al., PRC104, 044331 (2021)

Charge bubble for 42Si-46Ar ??
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FIG. 9. Variation of the energy difference between the first 1/2+

and 3/2+ states for Cl and K isotopes with the neutron number N .
GGF calculations were performed with NNLOsat and NN + 3N(lnl)
interactions. Full squares are experimental values. When only the
absolute value of the energy difference ! has been established,
empty squares are added following a 1/2+

1 or 3/2+
1 hypothesis for

the ground state. No value is given for the calculation of 47Cl with the
NN + 3N(lnl) interaction, as explained in text. Experimental values
for 41,43,45Cl are taken from [3,19–24]; experimental values for K
isotopes are taken from [13–15].

inspecting the theoretical strength distribution, we notice that
states around the Fermi surface in Cl isotopes are much more
fragmented than in their neighboring Z + 2 isotones. The
partial occupations of 1/2+ and 3/2+ states thus likely washes
out the mechanism at play in the K isotopes, which relies on
“naive” occupations of πs1/2 and πd3/2 shells. Two different
aspects induce this behavior. First, simply two fewer protons
are available for the πd3/2–ν f7/2 interaction to operate, with a
subsequent weakening of the attractive effect. Second, several
indications suggest that Ar nuclei around N = 28 constitute a
transitional region between spherical Ca and deformed S iso-
topes (see, e.g., a recent discussion in Ref. [76]). In particular,
44,46,48S are thought to be characterized by static deformation
with either oblate or prolate minima [83–85]. This picture is
indeed consistent with a reduced Z = 16 gap and a mixing
of configurations involving the πs1/2 and πd3/2 orbitals, with
a subsequent fragmentation around the Fermi surface. These
features make the study of Cl isotopes more challenging for
theoretical approaches. Future measurements aiming at pin-
ning down the sign of ! between N = 24 and N = 30 will
provide a unique test bench for the development of both shell-
model interactions and ab initio methods.

VII. CONCLUSION

To summarize, spectroscopy of the neutron rich 47,49Cl
isotopes at N = 30, 32 was carried out for the first time. The
main reaction was the one-proton knockout 50Ar(p, 2p) 49Cl
with detection of photons emitted in-flight, coupled to the
measurement of the momentum distributions of the residues.
Due to the large acceptance of the SAMURAI spectrome-
ter, multinucleon removal reactions were also analyzed. The
ground state of 49Cl was found to be consistent with a Jπ =
3/2+ assignment and a 1/2+ first excited state. This normal
ordering for 3/2+ and 1/2+ states is similar to the recently
observed 51K case, while spin inversion is still under debate
for the less neutron-rich chlorine isotopes 41,43,45,47Cl.
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Electron-Ion Trap  colliders…

First ever measurement of charge radii through 
electron scattering with and ion trap setting that can 
be used on radioactive isotopes !! 

K. Tsukada et al., Phy rev Lett 118, 262501 (2017)

P. Arthuis, CB, M. Vorabbi, P. Finelli, 
Phys. Rev. Lett. 125, 182501 (2020)



considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.

PHYSICAL REVIEW LETTERS 125, 182501 (2020)

182501-3

Charge density for Sn and Xe isotopes

Gorkov ADC(2)  and Dyson ADC(3)   with  N3LO-lnl and NNLOsat Hamiltonians
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FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
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132Xe

301 MeV. The experimental points and error bars are taken
from Ref. [10]. The different bands are computed using the
DREPHA code [58] starting from the nuclear charge density
distributions obtained from the two-point Fermi distribu-
tion of Ref. [10] (gray bands) and from our SCGF
calculations using NNLOsat (colored bands). The calcu-
lation is performed in the distorted wave Born approxi-
mation [59–61]. The results show very good agreement
with the experimental values, with only an interval of
effective momentum transfers between 0.8 fm−1 and
1.1 fm−1 being slightly off the error bars. To discard
the density oscillations within the nucleus as the source
of the discrepancy, we fitted a two-point Fermi density to
the radius and surface predicted by the theory. Calculations
using this Fermi distribution gave results within the band
obtained from the genuine SCGF density. This confirms the
inability of the experiment to give insights on the internal
structure of the nucleus without going past the second
minimum in the cross section. As a comparison, the results
obtained with the NN þ 3NðlnlÞ interaction are displayed
as well, scaled upward for clarity. Contrary to NNLOsat, the
NN þ 3NðlnlÞ interaction fails at reproducing the experi-
mental values, as expected with an underestimated charge
radius. This demonstrates the unique capacity of NNLOsat
to reproduce radii and density distributions and sets an
important precedent in the use of SCGF with the NNLOsat
interaction for pre- or postdiction of experimental results
from electron scattering off exotic nuclei. In particular, this
motivates experimental measurements at higher momentum
transfer to properly gauge the internal structure of nuclei.
Having proved the capacity of SCGF and NNLOsat to

give meaningful insights on the charge radius and density
distributions of 132Xe, charge densities have also been
calculated for 100Sn, 132Sn, 136Xe, and 138Xe for this
Hamiltonian. These are displayed in Fig. 4. The behavior

of the charge distributions is qualitatively similar for all of
them, with oscillations of the density within the nucleus
and the possibility of a slight depletion at its center.
The charge radii extracted from our calculations are

displayed for the same Sn and Xe isotopes in Table I and
compared to the experimental results [62]. Our results show
overall a good reproduction of the experimental data and
are a proof of the capacity of NNLOsat to produce accurate
results in the heavy nuclei regime, even despite the inability
to obtain converged values for the ground-state energy. In
the future, more accurate calculations with smaller errors
may uncover slight differences between NNLOsat and the
experimental values. Among the nuclei studied, 100Sn
stands out as a particularly interesting case. 100Sn sits close
to the proton dripline [63] at the end of superallowed α-
decay chains [64,65], has the largest strength known in
allowed β decay [66], and is expected to be the heaviest
doubly magic nucleus with N ¼ Z [67]. Despite of these
properties, experimental data in its area are scarce [68]; in
particular, neither its spectrum nor its radius have been
measured yet. While its spectrum has recently been
predicted from first principles [30], Table I displays the
first ab initio prediction of its charge radius.
Neutron skins are directly related to the density depend-

ence of the nuclear symmetry energy, a quantity critical to
the determination of the nuclear equation of state and
associated astrophysical properties [69]. SCGF calculations
in the mass range A ¼ 40–64 [36] suggest that NNLOsat
and NN þ 3NðlnlÞ yield nearly identical skins in spite of
their differences in the prediction of radii [70]. These
neutron skins tend to be systematically higher (or smaller
proton skins) than the experimental findings from Ref. [71]
but are within the reported error bars. Our results for Sn and
Xe are shown in Table II for both Hamiltonians. Although

FIG. 4. Charge density distributions for 100Sn, 132Sn, 132Xe,
136Xe, and 138Xe obtained from Gorkov SCGF calculations. The
charge density is shifted upward by 0.025 fm−3 between each
two nuclei, and the colored bands indicate the theoretical error
associated with model space convergence.

TABLE I. Charge radii in fm obtained from SCGF calculations
and NNLOsat compared to experimental values from Ref. [62].

SCGF Experiment
100Sn 4.525–4.707
132Sn 4.725–4.956 4.709 3
132Xe 4.700–4.948 4.785 9
136Xe 4.715–4.928 4.796 4
138Xe 4.724–4.941 4.827 9

TABLE II. Neutron skins in fm computed with SCGF. Each
interval indicates the theoretical error associated with model
space convergence.

NNLOsat NN þ 3NðlnlÞ
100Sn −0.079 to −0.096 −0.060 to −0.068
132Sn 0.168 to 0.197 0.180 to 0.275
132Xe 0.103 to 0.128 0.120 to 0.152
136Xe 0.128 to 0.156 0.134 to 0.223
138Xe 0.143 to 0.175 0.152 to 0.251
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Microscopic optical potential
Nuclear self-energy                  : 
• contains both particle and hole props. 

• it is proven to be a Feshbach opt. pot ! in general it is non-local !

Solve scattering and overlap functions directly in momentum space:

EF

A+1

A-1

E

mean-field

Particle-vibration 
couplings:

chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
αβðE;ΓÞ ¼ Σð∞Þ
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X
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s;β; ð2Þ

where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X

n

hΨA
0 jcαjΨAþ1

n ihΨAþ1
n jc†βjΨA

0 i
E − EAþ1

n þ EA
0 þ iΓ

þ
X

k

hψA
0 jc

†
αjΨA−1

k ihΨA−1
k jcβjΨA

0 i
E − EA

0 þ EA−1
k − iΓ

: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the
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where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as
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The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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NCSM/RGM [without core excitations] 

      EM500:  NN-SRG !SRG= 2.66 fm-1, Nmax=18 (IT) 
       [PRC82, 034609 (2010)] 

      NNLOsat: Nmax=8 (IT-NCSM) 

SCGF [Σ(∞)  only],  always Nmax=13

Benchmark with NCSM-based scattering.    

Scattering from mean-field only:

16O(n,n’)16O

Low energy scattering – from SCGF
[A. Idini, CB, Navratil, 
Phys. Rev. Lett. 123, 092501 (2019) ]



Benchmark with NCSM-based scattering.    

Scattering from mean-field only:

16O(n,n’)16O

Low energy scattering – from SCGF

Full self-energy from SCGF:

[A. Idini, CB, Navratil, 
Phys. Rev. Lett. 123, 092501 (2019) ]



Role of intermediate state configurations (ISCs)
[A. Idini, CB, Navrátil, 
Phys. Rev. Lett. 123, 092501 (2019)]n-16O, total elastic cross section

50% of 2p1h/2h1p poles suppressed

High order configurations, or 
ADC(n>>3), to be critical for fully 
ab initio optical potentials

chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be
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The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as
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which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
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dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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the NN and 3N interactions. Ŵ is included as an equivalent
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
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included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as
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The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
αβðE;ΓÞ ¼ Σð∞Þ
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X

n

hΨA
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: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as
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The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X
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Rn;lðkÞΣ

⋆l;j
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which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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Nuclear Density Functional from Ab Initio Theory

Machine-learn DFT functional  
on the nuclear equation of state

DFT is in principle exact – but the energy density functional (EDF) is not known

For nuclear physics this is even more demanding: need to link the EDF to theories rooted in QCD!
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We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and
advocate the need for a methodical approach that is free from ad hoc assumptions. The equations of state (EoSs)
of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.
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I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the
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latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for
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We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and
advocate the need for a methodical approach that is free from ad hoc assumptions. The equations of state (EoSs)
of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.
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I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the
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latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ #= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1

C&
t ρt&ρt

−W0

2

(

ρ∇ · J +
∑

q

ρq∇ · Jq

)]

. (29)

Three parameters, C&
0 , C&

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk

q (r) + U surf
q (r), where

Wq(r) = δEsurf

δJ(r)
= W0

2
(∇ρ + ∇ρq), (30)

U surf
q (r) = δEsurf

δρq

= 2C&
0 &ρ0 + 2C&

1 &ρ1τz − W0

2
(∇ · J + ∇ · Jq)

(31)

and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs

σE
(
C&

0 ,C&
1 ,W0

)
=

√∑nE
k=1

(
E th

k − E exp
k

)2

nE
, (32a)

σrch

(
C&

0 ,C&
1 ,W0

)
=

√∑nr
k=1

(
rth

k − rexp
k

)2

nr
(32b)

are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ #= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1

C&
t ρt&ρt

−W0

2

(

ρ∇ · J +
∑

q

ρq∇ · Jq

)]

. (29)

Three parameters, C&
0 , C&

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk

q (r) + U surf
q (r), where

Wq(r) = δEsurf

δJ(r)
= W0
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and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs
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are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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the AFDMC, the spin-isospin degrees of freedom are de-
scribed by single-particle spinors, the amplitudes of which are
sampled using Monte Carlo techniques based on the Hubbard-
Stratonovich transformation, reducing the computational cost
from exponential to polynomial in A. However, some of
the contributions characterizing fully realistic nuclear forces,
such as isospin-dependent spin-orbit contributions, cannot be
treated in this way, yet. Hence, the AFDMC is limited to
somewhat simplified interactions, but it can be applied to
compute larger nuclei and nuclear matter.

The starting point of AFDMC calculations is a trial wave
function, which is commonly expressed as the product of a
long-range component |!〉 and of two- plus three-body corre-
lations:

|"T 〉 =
∏

i< j

f c
i j

∏

i< j<k

f c
i jk|!〉. (7)

In the above equation, we assumed the correlations to be spin-
isospin independent. This simplified ansatz, consistent with
Refs. [58,81,82], is justified by the fact that the AV4′ + UIXc
Hamiltonian does not contain tensor or spin-orbit terms.

In finite nuclei, |!〉 is constructed by coupling different
Slater determinants of single-particle orbitals in the |nl jmj〉
basis so as to reproduce the total angular momentum, total
isospin, and parity of the nuclear state of interest [6]. On the
other hand, infinite nuclear matter is modeled by simulating
a finite number of nucleons on which periodic-box boundary
conditions are imposed [83]. In this case, the single-particle
states are plane waves with quantized wave numbers:

k = 2π

L
(nx, ny, nz ) ni = 0,±1,±2, . . . , (8)

where L is the size of the box and the shell closure condition
must be met in order to satisfy translational invariance. As
a consequence, the number of nucleons in a box must be
equal to the momentum space “magic numbers” (1, 7, 19, 27,
33, . . . ) times the number of spin/isospin states: 2 for PNM,
4 for SNM. The equations of state of nuclear matter discussed
in Sec. IV A are computed with 66 neutrons (PNM) and
76 nucleons (SNM) in a periodic box.

The AFDMC method has no difficulty in dealing with
“stiff” forces that can generate wave functions with high-
momentum components. This is in contrast with remarkably
successful many-body approaches that rely on a basis ex-
pansion [11,12,84,85], which need relatively “soft” forces to
obtain converged calculations. However, like standard dif-
fusion Monte Carlo algorithms, the AFDMC suffers from
the fermion sign problem, which results in large statistical
errors that grow exponentially with τ . To control it, we
employ the constrained-path approximation, as described in
Refs. [6,69,86]. This scheme is believed to be accurate for
Hamiltonians that do not include tensor or spin-orbit opera-
tors, as is the case for the AV4′ + UIXc potential. Expectation
values of operators Ô that do not commute with the Hamilto-
nian are evaluated by means of the mixed estimator [4]

〈Ô(τ )〉 ≈ 2
〈"T |Ô|"(τ )〉
〈"T |"(τ )〉

− 〈"T |Ô|"T 〉
〈"T |"T 〉

. (9)

Also, charge radii are estimated from the proton radii with the
formula r2

ch = r2
p + (0.8 fm)2.

III. METHOD

A. Nuclear EDFs

The general structure of a nonrelativistic nuclear EDF is
described in depth in Refs. [27,28,87]. In this section, the
discussion is limited to even-even nuclei and to quasilocal
EDFs, i.e., functionals that can be expressed as the volume
integral of an energy density E (r) which is a function of
the local densities [28] and their gradients. Nonlocal EDFs
such as Gogny ones are not treated. Moreover, for simplicity
pairing terms are neglected. Applications shall be limited to
magic nuclei and to some closed-subshell ones.

Under these assumptions, the total energy is a functional
of the time-even proton and neutron densities [number density
ρq(r), kinetic density τq(r), and spin-orbit density Jq(r), with
q = n, p] [28,35] and reads

E =
∫

dr E (r) = Ekin + Epot + ECoul. (10)

The kinetic energy term is given by [35]

Ekin =
∫

dr Ekin(r) =
∫

dr
h̄2

2m
τ0(r). (11)

The Coulomb contribution ECoul is treated in the standard
local Slater approximation [88]. The most general form of the
potential term

Epot =
∫

dr Epot(r) (12)

is reported in Eqs. (48) and (49) of Ref. [28], and will be
outlined in the next section. Neutron and proton densities have
been recoupled into the isoscalar (t = 0) and isovector (t = 1)
channels: isoscalar densities are total densities (e.g., ρ0 =
ρn + ρp), while isovector densities account for proton-neutron
differences (ρ1 = ρn − ρp). The coefficients of the various
terms are all, in principle, functions of the density, although
in practice most of them are set to a constant value [27].
The mean field equations are then derived by relating the
densities to the single-particle orbitals φ j (r) and applying the
variational principle [87]:

[
−∇ · h̄2

2m∗
q (r)

∇ + Uq(r) + UCoul(r)δq,p (13)

+ Wq(r) · (−i)(∇ × σ )
]
φ j (r) = ε jφ j (r) (14)

where

Uq = δE
δρq

,
h̄2

2m∗
q (r)

= δE
δτq

, Wq = δE
δJq

, (15)

and m∗
q (r), Uq(r), and Wq(r) are called effective mass, mean

field, and spin-orbit potential, respectively.
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FIG. 1. Dots: SNM and PNM EoS computed with the NNLOsat

interaction and the SCGF method. Dashed: model EoS (2,3,4,5,6)
(see text).

saturate; in fact, AV4′ alone predicts no saturation before 0.50
fm−3 [97]. The smallest validation error (MSE = 0.06 MeV2)
is achieved by the (2,5,6) model, which is shown in Fig. 2
together with the ab initio EoS.

To sum up, parametrizing the nuclear EoS as a polynomial
of the Fermi momentum has proved an effective ansatz. Two
optimal models have been found, namely, (2,3,4,5,6) for the
NNLOsat EoS and (2,5,6) for the AV4′ + UIXc EoS. The
parameters of these models are reported in Table III.

B. Predictions of the LDA EDFs in finite nuclei

Two LDA EDFs are derived from the (2,3,4,5,6) and (2,5,6)
parametrizations of the NNLOsat- and the AV4′ + UIXc-based
EoS (Sec. IV A). These are then applied to closed-subshell
nuclei and compared to experimental values, taken from
Refs. [98,99], and to ab initio results. Full ab initio calcula-
tions are available for a set of nuclei up to 54Ca for NNLOsat

TABLE I. Energy per particle e computed with SCGF and the
NNLOsat interaction at several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −7.94 5.22
0.08 −11.78 6.71
0.12 −13.98 8.51
0.16 −14.62 11.23
0.20 −13.68 14.99
0.22 −12.61 17.24
0.24 −11.12 19.71
0.26 −9.22 22.40
0.28 −6.91 25.29
0.32 −1.00 31.58

TABLE II. Energy per particle e and standard errors (in paren-
theses) computed with AFDMC and the AV4′ + UIXc interaction at
several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −8.17 (1) 7.062 (5)
0.08 −13.60 (1) 11.075 (6)
0.12 −17.48 (1) 15.278 (8)
0.16 −20.74 (2) 20.20 (1)
0.20 −22.80 (1) 26.23 (1)
0.22 −23.42 (2) 29.66 (2)
0.24 −23.68 (3) 33.44 (3)
0.26 −23.58 (3) 37.47 (2)
0.28 −23.15 (3) 42.12 (3)
0.32 −21.10 (3) 52.26 (5)
0.36 −17.0 (1) 63.91 (6)
0.40 −12.21 (8) 77.51 (7)

and 90Zr for AV4′ + UIXc. Moreover, the NNLOsat densities
for 90Zr are available.

The discrepancy between theory and experiment for ener-
gies per nucleon (top) and charge radii (bottom) are shown in
Fig. 3 for NNLOsat and the (2,3,4,5,6) EDF, as well as the
GA-E and GA-r EDFs introduced later on (Sec. IV C). On
the one hand, we can appreciate that NNLOsat predictions are
very close to experiment. On the other hand, the LDA EDF, al-
though less precise, exhibits interesting trends, since it enables
one to reproduce heavier nuclei, especially from 90Zr on, in
a realistic way, with deviations smaller than 1 MeV/nucleon
and 0.05 fm for the energies and radii, respectively. This is
quite remarkable, as the LDA EDF incorporates only infor-
mation on uniform matter. Also, it is unsurprising that light
systems are less amenable to a local density treatment, since

FIG. 2. Dots: SNM and PNM EoS computed with the AV4′ +
UIXc interaction and the AFDMC method. The AFDMC statistical
error bars are shown. Dashed: model EoS (2,5,6) (see text).
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ #= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where
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[
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t ρt&ρt
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Three parameters, C&
0 , C&

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk

q (r) + U surf
q (r), where

Wq(r) = δEsurf

δJ(r)
= W0

2
(∇ρ + ∇ρq), (30)

U surf
q (r) = δEsurf

δρq

= 2C&
0 &ρ0 + 2C&

1 &ρ1τz − W0

2
(∇ · J + ∇ · Jq)

(31)

and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs
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are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
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{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ #= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1
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t ρt&ρt

−W0
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(
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Three parameters, C&
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1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk
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and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs
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are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r),β(r)] = ρ(r)v[ρ(r),β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ #= m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[
∑

t=0,1
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t ρt&ρt
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Three parameters, C&
0 , C&

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk
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and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C&
0 , C&

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs
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are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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TABLE III. Coefficients of the optimal polynomial parametriza-
tions (23) of the NNLOsat and AV4′ + UIXc EoS. The exponents γ

and the corresponding parameters cγ ,0 and cγ ,1 are reported.

γ cγ ,0 (MeV fm3γ ) cγ ,1 (MeV fm3γ )

NNLOsat 2/3 −182.41 16.93
1 252.54 920.29

4/3 −501.04 −4026.38
5/3 63.80 6440.50

2 669.42 −3646.52

AV4′ + UIXc 2/3 −131.94 81.04
5/3 −578.00 64.04

2 901.30 48.97

surface effects are known to play a larger role for small values
of A.

In Fig. 4, the deviation of the AV4′ + UIXc, (2,5,6) EDF,
and GA-E and GA-r EDF (Sec. IV C) predictions from ex-
periment is shown. The outcome is puzzling, since, while
the ab initio results are overall decent, the LDA EDF (2,5,6)
strongly overbinds all the nuclei considered, by ≈10 MeV
per nucleon. In addition, radii are underestimated with re-
spect to both experiment and ab initio. Thus, in the case of
the phenomenological interaction AV4′ + UIXc, LDA alone
has difficulties to capture the properties of the microscopic
potential.

Number densities are then shown for the representative
nuclei 48Ca (Fig. 5) and 90Zr (Fig. 6). In the NNLOsat case (top
left), the (2,3,4,5,6) EDF density profile closely resembles the
ab initio one, although it features slightly wider oscillation.

FIG. 3. Discrepancy between the predicted energies per nucleon
(top) and charge radii (bottom) and the corresponding experimental
values for a set of closed subshell nuclei. Results obtained with the
NNLOsat interaction and with the LDA, GA-E, and GA-r EDFs are
shown. The LDA EDF is derived from the (2,3,4,5,6) model EoS.
The GA-E and GA-r EDFs are described in Sec. IV C.

FIG. 4. Same as Fig. 3 (note the different scale), but for results
obtained with the AV4′ + UIXc interaction and with the LDA, GA-E,
and GA-r EDFs. The LDA EDF is based on the (2,5,6) EoS.

In the AV4′ + UIXc case (top right), instead, the (2,5,6) EDF
and ab initio number densities differ considerably, as LDA
produces definitely steeper density profiles, consistently with
predicting sensibly smaller radii. Also, it somewhat overes-
timates the central density. In the bottom panel, the 48Ca ab
initio densities weighted by the squared radius, r2ρ(r), are
compared. The r2 factor emphasizes that AV4′ + UIXc and
NNLOsat predict rather different density surfaces. Roughly
similar considerations hold for 90Zr, except that the discrep-
ancy of AV4′ + UIXc with the (2,5,6) EDF, as well as with
NNLOsat, is more accentuated.

In conclusion, the NNLOsat-based LDA EDF compares
favorably with the experiment, in spite of its simplicity,
and reproduces radii, energies, and densities fairly well in
magic nuclei, especially in the heavier ones. The AV4′ +
UIXc-based EDF, on the other hand, is less satisfactory and
highlights even more clearly the necessity of introducing sur-
face terms.

C. Predictions of the GA EDFs

In Sec. III C, simple GA EDFs have been introduced by
complementing LDA with two gradient terms and one spin-
orbit term. In this section, the predictions of the GA EDFs
based on NNLOsat and AV4′ + UIXc are discussed. The pa-
rameters C#

0 , C#
1 , and W0 are tuned by grid searching over

physically reasonable intervals and the results for the four
EDFs that yield the smallest rms errors on binding energies
or charge radii, called GA-E and GA-r for short, are shown.
The corresponding parameters are reported in Table IV. The
three parameters are measured in MeV fm5; from now on, for
simplicity the dimension is omitted.

In the case of the NNLOsat-based EDF (2,3,4,5,6), we have
considered C#

0 and C#
1 in the intervals [−40, 0] and [0,40]

in steps of 5, while we have varied W0 between 30 and 140
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FIG. 5. Ab initio and EDF (LDA, GA-E, and GA-r) number densities, ρ(r), for 48Ca computed using the NNLOsat (top left) and AV4′ +
UIXc (top right) Hamiltonians. See text for details. Note that for the AV4′ + UIXc case the GA-E and GA-r curves overlap closely. Bottom:
ab initio number densities times the squared radius, r2ρ(r), obtained with NNLOsat (full line) and AV4′ + UIXc (dotted).

in steps of 10. The smallest rms error on the energy is ob-
tained for (C"

0 = −25, C"
1 = 10, W0 = 50), while charge radii

are best reproduced for (C"
0 = −30, C"

1 = 25, W0 = 140)

(Table V). The remarkable improvement over the LDA EDF
can be appreciated by looking at energies and radii (Fig. 3). In
Figs. 5 and 6, the effect of the gradient terms on the number

FIG. 6. Ab initio and EDF (LDA, GA-E, and GA-r) number densities of 90Zr obtained from NNLOsat (top left) and AV4′ + UIXc (top
right). Note that for the AV4′ + UIXc case the GA-E and GA-r curves overlap closely. Bottom: ab initio results for r2ρ(r) using NNLOsat (full
line) and AV4′ + UIXc (dotted).
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Gradient terms are important (but  

they seem to work!):
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Need to extract gradient information 
from non-uniform matter 

External (monocromatic) 
perturbation:

5

at the uniform matter values ⇢(z) = ⇢0, ⌧(z) = 3
5⇢0q

2
F

and J(z) = 0 and the fields are determined accordingly.
The s.c. procedure is stopped if two conditions are

met: the energies between iterations i and i � 1 and, at
the same time, the two formulas (22) and (21) for the
energy at iteration i, agree within a chosen tolerance.
Thresholds of the order of 0.1-1 keV per nucleon can be
obtained usually in few tens of iterations. Combining
linear mixing and two convergence conditions makes our
approach rather robust.

III. THEORY OF THE STATIC RESPONSE

The theory of the response of homogeneous matter to
an external static perturbation is summarized. In-depth
discussions can be found in Refs. [29, 47, 48].

Consider a system with uniform g.s. density ⇢0, de-
scribed either by a Hamiltonian Ĥ or an EDF. A static
potential v(x) coupled to the total density is then turned
on. v(x) is periodic so as to respect the PBCs. The den-
sity and energy of the g.s. of the perturbed system are
called ⇢v(x) and E[v], respectively. If the external po-
tential is weak enough, its e↵ect can be treated pertur-
batively (see e.g. Refs. [43, 47]). The density fluctuation
induced by v(x), in particular, is linear in the external
potential and is written as follows:

�⇢(x) = ⇢v(x)� ⇢0 =

Z
dx0

�(x,x0)v(x0). (24)

The static response function �(x,x0) has been introduced
and we stress that it depends exclusively on the proper-
ties of the unperturbed system. The response of homo-
geneous matter, in particular, is a function only of x�x0,
i.e �(x,x0) = �(x� x0).

While a generic periodic function v(x) is a superposi-
tion of plane waves, in the following we consider without
loss of generality a monochromatic potential oscillating
at a given wave number q, namely

v(x) = vqe
iq·x + c.c. = 2vq cos (q · x) . (25)

Thus the density fluctuation induced by the perturbation
(25) is monochromatic too and is given by

�⇢(x) = 2⇢q cos (q · x) , (26)

where the amplitude ⇢q is linear in vq, i.e.

⇢q = �(q)vq (27)

and �(q) is the Fourier transform of �(x,x0), see Eq.
(B6). The energy of the perturbed system, instead, is
quadratic in the external potential. In App. B, we derive
that the energy per particle is given by [29]

�ev = ev � e0 =
�(q)

⇢0
v
2
q . (28)

The formalism we have outlined is valid both in the
TL and in finite systems, and both for DFT and for
Hamiltonian-based methods. The question is now how
to compute the response function in practice. For gener-
alized Skyrme EDFs [23] and Gogny and Nakada EDFs
[24], for example, the response in the TL can be deter-
mined analytically (App. C). An alternative for study-
ing �(q) is provided by exploiting Eqs. (27) or (28).
The strategy to determine �(q) for a uniform system at
a given density ⇢0, and with a given particle number,
is the following. For a given (quantized) momentum q,
multiple calculations of the g.s. of the perturbed system
are performed for di↵erent values of the strength vq of
the external potential (25). Then �(q) can be extracted
from the amplitude of the density fluctuations [Eq. (27)]
or from the energies [Eq. (28)] as a function of vq, for
su�ciently small vq. This strategy has been applied in
several contexts, e.g. Refs. [26, 29, 49, 50], and pro-
vides a relatively straightforward way to determine the
static response function numerically. We will interpolate
energies using the more general formula [26, 49]

�ev = ev � e0 =
�(q)

⇢0
v
2
q + C4v

4
q (29)

which takes into account higher-order contributions.
Second-order perturbation theory, or equivalently the

spectral representation of the dynamical density response
�(q,!), can be employed to derive a formula that relates
�(q) to the excited states of the homogeneous system
[43, 47]. For the case of the spin- and isospin-saturated
A-fermion FG, the response �0,A at zero temperature is
given by [47, 49]

�0,A(q) = �4mg

~2⌦
X

k occ

1

(k+ q)2 � k2
, (30)

where the sum extends over the occupied momentum
states and terms with vanishing denominator are can be
safely neglected. Consistently with the assumptions of
Sec. II, we write k = 2⇡

L n and take q quantized and
parallel to the z direction, i.e. q = qẑ = 2⇡

L p ẑ, with p

integer. Then Eq. (30) is expressed as
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This formula is straightforward to evaluate: we deter-
mine the occupied states of the A-particle FG g.s. once
and then, for each value of q, we simply perform a
sum over these states. In the TL, nk = ✓(qF � k),
1
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P
k �!
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dk

(2⇡)3 [43] and the static response becomes

the well-known Lindhard function at zero-frequency [51]
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at the uniform matter values ⇢(z) = ⇢0, ⌧(z) = 3
5⇢0q

2
F

and J(z) = 0 and the fields are determined accordingly.
The s.c. procedure is stopped if two conditions are

met: the energies between iterations i and i � 1 and, at
the same time, the two formulas (22) and (21) for the
energy at iteration i, agree within a chosen tolerance.
Thresholds of the order of 0.1-1 keV per nucleon can be
obtained usually in few tens of iterations. Combining
linear mixing and two convergence conditions makes our
approach rather robust.

III. THEORY OF THE STATIC RESPONSE
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discussions can be found in Refs. [29, 47, 48].
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https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/
Chapter11-programs/Inf_Matter. We will use the C++ programming language and
will refer to this code for describing the technical details of the implementation.
We then show results based on the Minnesota nuclear potential from [47]. This
is a very simplified model of the nuclear interaction that allows for an easy
implementation. On the other hand, it still retains some physical properties of
the nuclear Hamiltonian that will allow us to discuss the basic features of the
spectral function of nucleonic matter (and of infinite fermionic systems in general).
The reader interested in these physics aspects could refer directly to Sect. 11.4.2.

11.4.1 Computational Details for ADC(n)

The first fundamental step to set up a SCGF computation is the choice of the model
space. For infinite matter, translational invariance imposes that the Dyson equation
is diagonal in momentum and therefore it becomes much easier to solve the problem
in momentum space. However, there remain two possible choices for how to encode
single particle degrees of freedom. The first one is to subdivide the infinite space in
boxes of finite size and to impose periodic boundary conditions (see also Chap. 8).
In this way, the number of fermions included in each box is finite and determined by
the particle density of the system. The resulting model space is naturally expressed
by a set of discretized single particle states and one solves the working equations in
the form of Eqs. (11.38), (11.39) and (11.48). This path requires the same technical
steps needed to calculate finite systems in a box. Numerical results then need to
be converged with respect to the truncation of the k-space (and, for an infinite
system, with respect to the number of nucleons inside each periodic box). We will
follow this approach for the present computational project. The other approach is to
retain the full momentum space and write the SCGF equations already in the full
thermodynamic limit. This choice is best suited to solve the Dyson equation at finite
temperatures and in a full SCGF fashion and will be discussed further in Sect. 11.5.

Construction of the Model Space For simplicity, we assume a total number A of
nucleons in each (cubic) periodic box. For boxes of length L, the density and the
Fermi momentum are expressed, respectively as („=1):

! D A
L

and pF D 3

s
6"2!

#d
; (11.54)

where the degeneracy #d is twice the number of different spin- 1
2
fermions and the

basis states are defined by the cartesian quantum numbers nx, ny, nz= 0, 1, 2. . .with
momentum

p D 2"

L

0

@
nx
ny
nz

1

A : (11.55)

Finite size box (of length L)  with 
periodic Boundary conditions:
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We work with a system of A non-relativistic fermions interacting by means of
two-body and three-body interactions. We divide the Hamiltonian into two parts,
bH D bH0 C bH1. The unperturbed term, bH0 D bT C bU, is given by the sum
of the kinetic term and an auxiliary one-body operator bU. Its choice defines the
reference state, j˚A

0 i, and the corresponding unperturbed propagator g.0/.!/ that
are the starting point for the perturbative expansion.1 The perturbative term is then
bH1 D !bU CbV C bW, where bV denotes the two-body interaction operator and bW is
the three-body interaction. In a second-quantized framework, the full Hamiltonian
reads:

bH D
X

˛

"0˛ a
!
˛a˛ !

X

˛ˇ

U˛ˇ a!˛aˇ C
1

4

X

˛"
ˇı

V˛";ˇı a!˛a
!
"aıaˇ

C 1

36

X

˛"#
ˇı$

W˛"#;ˇı$ a!˛a
!
"a
!
#a$aıaˇ : (11.13)

In Eq. (11.13) we continue to use Greek indices ˛,ˇ," ,. . . to label the single particle
basis that defines the model space. But we make the additional assumption that
these are the same states which diagonalize the unperturbed Hamiltonian, bH0, with
eigenvalues "0˛. This choice is made in most applications of perturbation theory but
it is not strictly necessary here and it will not affect our discussion in the following
sections. The matrix elements of the one-body operator bU are given by U˛ˇ . And
we work with properly antisymmetrized matrix elements of the two-body and three-
body forces, V˛";ˇı andW˛"#;ˇı$ .

In time representation, the many-body Green’s functions are defined as the
expectation value of time-ordered products of annihilation and creation operators
in the Heisenberg picture. This is shown by Eq. (11.1) for the single particle
propagator. Every Green’s function can be expanded in a perturbation series in
powers of bH1. For the one-body propagator this reads [22, 35]:

g˛ˇ.t˛ ! tˇ/ D .!i/
1X

nD0
.!i/n

1

nŠ

Z
dt1 : : :

Z
dtn

"h˚A
0 jT ŒbHI

1.t1/ : : :bHI
1.tn/a

I
˛.t˛/a

I
ˇ

!
.tˇ/&j˚A

0 iconn ; (11.14)

where bHI
1.t/, a

I
˛.t/ and aIˇ

!
.t/ are now intended as operators in the interaction

picture with respect to H0. The subscript “conn” implies that only connected
diagrams have to be considered when performing the Wick contractions of the
time-ordered product T . Each Wick contraction generates an uncorrelated single
particle propagator, g.0/.!/, which is associated with the system governed by the

1A typical choice in nuclear physics would be a Slater determinant such as the solution of the
Hartree-Fock problem or a set of single-particle harmonic oscillator wave functions.
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Solution

Upon performing the four frequency integrals, one obtains:
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11.3 The Algebraic Diagrammatic Construction Method

The most general form of the irreducible self-energy is given by Eq. (11.15).
The ˙.1/ is defined by the mean-field diagrams of Fig. 11.3a and Eq. (11.17a),
while ė.!/ has a Lehmann representation as seen in the examples of Eqs. (11.25)
and (11.26). Similarly to the case of a propagator, the pole structure of the energy-
dependent part is dictated by the principle of causality with the correct boundary
conditions coded by the ˙i% terms in the denominators. This implies a dispersion
relation that can link the real and imaginary parts of the self-energy [22, 26].
Correspondingly, the direct coupling of single particle orbits to ISCs (of 2p1h and
2h1p character or more complex) imposes the separable structure of the residues. In
this section we consider the case of a finite system, for which it is useful to use a
discretized single particle basis f˛g as the model space. From now on we will use
the Einstein convention that repeated indices (n, k, ˛. . . ) are summed over even if
not explicitly stated. Thus, the above constraints impose the following analytical
form for the self-energy operator:

˙
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"

s;s0
N&s0;ˇ ; (11.27)

where, here and in the following, ! and ˙i% are to be intended as multiplication
operators (that is, with matrix elements Œ!C i%'s;s0 D .!C i%/ıs;s0) and the fraction
means a matrix inversion. In Eq. (11.27), theE> and E< are the unperturbed energies
for the forward and backward ISCs and r and s are collective indices that label sets of
configurations beyond single particle structure. Specifically, r is for particle addition
and will label 2p1h, 3p2h, 4p3h, . . . states, in the general case. Likewise, s is for
particle removal and we will use it to label 2h1p states (or higher configurations).
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Neutron matter, through its connection to neutron stars as well as systems like cold atom gases,
is one of the most interesting yet computationally accessible systems in nuclear physics. The
Configuration-Interaction Monte Carlo (CIMC) method is a stochastic many-body technique allowing
to tackle strongly coupled systems. In contrast to other Quantum Monte Carlo methods employed
in nuclear physics, the CIMC method can be formulated directly in momentum space allowing
for an e�cient use of non-local interactions. In this work we extend CIMC method to include
three-nucleon interactions through the normal-ordered two-body approximation. We present results
for the equation of state of neutron matter in line with other many-body calculations that employ
low resolution chiral interactions, and provide predictions for the momentum distribution and the
static structure factor.

I. INTRODUCTION

A common feature among e�ective theories of complex
systems is their intrinsic non-locality originating from the
integration of non-essential degrees of freedom. This fea-
ture permeates nuclear physics at di�erent levels because,
besides the many-body mechanisms at play, the relevant
components of the nucleus (protons and neutrons) are
themselves the result of the underlying degrees of freedom
of Quantum Chromodynamics (QCD). For this reason,
modern ‘first principle’ theories of nuclear systems rely
on e�ective field theories (EFTs) to construct realistic
inter-nucleon interactions [1]. In this approach, the ex-
change of light mesons (pions) and the inclusion of contact
counterterms are ordered according to a perturbative se-
ries [2–4]. However, most many-body methods used to
study low energy processes cannot deal explicitly with
mesonic fields. Mesons are then integrated out using some
regulator that imposes a cuto� in momentum space, and
the resulting potential is in general correctly described
only including explicit momentum-dependent terms.

Partly due to the recent success of the application of
Quantum Monte Carlo in dealing e�ciently with Hamilto-
nians including complex operatorial dependencies, like the
Auxiliary Field Di�usion Monte Carlo (AFDMC) [5, 6],
a substantial e�ort was made in order to produce local
versions of chiral e�ective interactions (local ‰-EFT po-
tentials) [7, 8]. These potentials, while retaining some of
the spirit of the chiral EFT, are plagued by a number of
necessary inconsistencies (such as in the introduction of

ú parthuis@theorie.ikp.physik.tu-darmstadt.de
† carlo.barbieri@unimi.it

regulators that break Fierz symmetry), making the basic
connection with the QCD symmetries feebler and feebler.

In this context the use of methods that can smoothly
work in momentum space, avoiding the necessity of this
further step of making the interaction local, would be
preferable. Non-local Hamiltonians can be easily handled
for finite nuclei by exploiting methods formulated in a
Fock space (i.e., the space of the Slater determinants
and including di�erent particle numbers) built on sets of
localised basis functions [9]. Several ab initio methods,
such as Many-Body Perturbation Theory (MBPT) [10],
Self-Consistent Green’s Function (SCGF) [11, 12], Cou-
pled Cluster (CC) [13, 14] or the In-Medium Similarity
Renormalization Group (IMSRG) [15, 16], can indeed pro-
vide results beyond light nuclei and have reached masses
above A≥100 [17–20] up to first estimations of 208Pb [21].
Working in momentum space also gives direct access to
quantities such as the momentum distribution or the
static structure factor that are not so easily computable
in coordinate space, and that are an important ingredient
for the estimate of further observables of interest. More-
over, momentum space calculations facilitates accurate
determinations of optical potentials [22], that would draw
a bridge between ab initio methods and the description
of dynamical processes for medium-heavy nuclei.

For the case of infinite matter, the SCGF approach
can be implemented directly in momentum space, which
allows to handle high-momentum components and there-
fore works equally well with both soft and hard interac-
tions [23, 24]. Moreover, the moderate computing require-
ments (sometimes not even requiring parallelisation) and
its general formulation at finite temperatures make SCGF
the method of choice to investigate a large range of phe-
nomena, such as nucleon propagation in the medium [25]
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consider a general second-quantized fermionic Hamiltonian including two

and possibly many-body interactions

H ¼
X

αβ2S
Eαβa{αaβ +

X

αβγδ2S
Vαβγδa

{
αa

{
βaδaγ +⋯ : (1)

In this expression, Greek letter indices indicate sp states (i.e., α is a collective
label for all sp quantum numbers), the operator aα

† (aα) creates (destroys) a

particle in the sp state α and the Vαβγδ are general (antisymmetrized) two-

body interaction matrix elements:

Vαβγδ ¼ hαβjV̂ jγδi" hαβjV̂ jδγi: (2)

For an N-fermion system the resulting Fock space would be spanned by the

full set of N-particle Slater determinants that can be generated using the sp

orbitals α2S. We will denote these Slater determinants in the occupation

number basis by jni, where n#{nα} and nα¼ 0, 1 are occupation number of

the single-particle orbital α satisfying
P

αnα¼N . Notice that the formula-

tion so far does not rely on any special choice of either the interaction or basis

set. We can now use these states as a complete basis in our many-body

Hilbert space and express a generic state in it as:

jΨi¼
X

n

hnjΨijni#
X

n

ΨðnÞjni (3)

where the sum is carried out over all the possible basis vectors obtained using

a finite set including N S single-particle orbitals.

The core idea of diffusion Monte Carlo is to extract information on the

ground state of the HamiltonianH by evolving in imaginary-time a state jΨi
nonorthogonal to the ground state itself:

Ψτ+ΔτðmÞ¼
X

n

hmjPjniΨτðnÞ, (4)

with a suitable projection operator P as for instance:

hmjPjni¼ hmje"ΔτðH"ET Þjni: (5)

In order to interpret Eq. (4) as a stochastic process we, however, need the

matrix elements of the projection operator to be positive definite and, apart

from very special Hamiltonians, this cannot be achieved in practice. This fact

gives rise to a sign problem. In our case we deal with this sign problem by

using a trial state jΦi to define a one-parameter family of Hamiltonians H
&

γ
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Immaginari time evolution 
to the ground state (DMF):

Monte Carlo smapling over 
configuration space:

among them. We note in passing that most of the time this corresponds to

the extrapolated value.

2.2 Importance Functions and Recursion Relations
It becomes then clear that, in order for this to make any practical sense, we

need a trial state which is both accurate and whose overlaps Φ(n) can be

computed quickly for any Slater determinant. In this work we use a trial state

modeled using the CC ansatz:

jΨCCi¼ eT̂ jΦHFi, (10)

where jΦHFi is the Hartree–Fock ground state. In the above equation, cor-

relations are introduced trough the excitation operator T̂ , which in CC

theory is hierarchically divided as

T̂ ¼ T̂ 1 + T̂ 2 + T̂ 3 +⋯ (11)

where the index 1, 2,… refers to the number of creation/annihilation oper-

ators that compose them. The first two terms that we will be using in this

calculations can be written explicitly as:

T̂ 1¼
X

α,β2S
tβαa

{
βaα T̂ 2¼

1

4

X

α,β,γ,δ2S
tγδαβa

{
γa

{
δaαaβ ⋯ , (12)

and correspond to the truncation dubbed coupled cluster singles and doubles

(CCSD). The amplitudes tα
β and tγδαβ are usually obtained by solving the

CCSD equations using the basis set of choice for our calculation. Since

this procedure is quite computationally expensive, we have also explored

the possibility of using the amplitudes given by first-order perturbation

in the wave function.

Once the amplitudes are known we use a recursive algorithm to evaluate

the overlap of the CC wave function with a general Slater determinant. To

set the notation we will express a generic Slater-determinant state describing

a M-particle–M-hole state as:

jmi¼ a{p1…,a{pM ah1…,ahM jΦHFi" jΦp1,…,pM
h1,…,hM

i: (13)

The required amplitude can then be expressed as a superposition of M # 2

particle/hole states that can be generated from m. Eventually (the proof is

tedious but straightforward) one obtains

245Extension of the Configuration Interaction Monte Carlo Method to Atoms and Molecules

among them. We note in passing that most of the time this corresponds to

the extrapolated value.

2.2 Importance Functions and Recursion Relations
It becomes then clear that, in order for this to make any practical sense, we

need a trial state which is both accurate and whose overlaps Φ(n) can be

computed quickly for any Slater determinant. In this work we use a trial state

modeled using the CC ansatz:

jΨCCi¼ eT̂ jΦHFi, (10)

where jΦHFi is the Hartree–Fock ground state. In the above equation, cor-

relations are introduced trough the excitation operator T̂ , which in CC

theory is hierarchically divided as

T̂ ¼ T̂ 1 + T̂ 2 + T̂ 3 +⋯ (11)

where the index 1, 2,… refers to the number of creation/annihilation oper-

ators that compose them. The first two terms that we will be using in this

calculations can be written explicitly as:

T̂ 1¼
X

α,β2S
tβαa

{
βaα T̂ 2¼

1

4

X

α,β,γ,δ2S
tγδαβa

{
γa

{
δaαaβ ⋯ , (12)

and correspond to the truncation dubbed coupled cluster singles and doubles

(CCSD). The amplitudes tα
β and tγδαβ are usually obtained by solving the

CCSD equations using the basis set of choice for our calculation. Since

this procedure is quite computationally expensive, we have also explored

the possibility of using the amplitudes given by first-order perturbation

in the wave function.

Once the amplitudes are known we use a recursive algorithm to evaluate

the overlap of the CC wave function with a general Slater determinant. To

set the notation we will express a generic Slater-determinant state describing

a M-particle–M-hole state as:

jmi¼ a{p1…,a{pM ah1…,ahM jΦHFi" jΦp1,…,pM
h1,…,hM

i: (13)

The required amplitude can then be expressed as a superposition of M # 2

particle/hole states that can be generated from m. Eventually (the proof is

tedious but straightforward) one obtains

245Extension of the Configuration Interaction Monte Carlo Method to Atoms and Molecules

The specific CIMC algorithm is build in such a way that it preserves the variational principle.

A. Roggero, Ph.D. thesis and refs. therein.
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Neutron matter, through its connection to neutron stars as well as systems like cold atom gases,
is one of the most interesting yet computationally accessible systems in nuclear physics. The
Configuration-Interaction Monte Carlo (CIMC) method is a stochastic many-body technique allowing
to tackle strongly coupled systems. In contrast to other Quantum Monte Carlo methods employed
in nuclear physics, the CIMC method can be formulated directly in momentum space allowing
for an e�cient use of non-local interactions. In this work we extend CIMC method to include
three-nucleon interactions through the normal-ordered two-body approximation. We present results
for the equation of state of neutron matter in line with other many-body calculations that employ
low resolution chiral interactions, and provide predictions for the momentum distribution and the
static structure factor.

I. INTRODUCTION

A common feature among e�ective theories of complex
systems is their intrinsic non-locality originating from the
integration of non-essential degrees of freedom. This fea-
ture permeates nuclear physics at di�erent levels because,
besides the many-body mechanisms at play, the relevant
components of the nucleus (protons and neutrons) are
themselves the result of the underlying degrees of freedom
of Quantum Chromodynamics (QCD). For this reason,
modern ‘first principle’ theories of nuclear systems rely
on e�ective field theories (EFTs) to construct realistic
inter-nucleon interactions [1]. In this approach, the ex-
change of light mesons (pions) and the inclusion of contact
counterterms are ordered according to a perturbative se-
ries [2–4]. However, most many-body methods used to
study low energy processes cannot deal explicitly with
mesonic fields. Mesons are then integrated out using some
regulator that imposes a cuto� in momentum space, and
the resulting potential is in general correctly described
only including explicit momentum-dependent terms.

Partly due to the recent success of the application of
Quantum Monte Carlo in dealing e�ciently with Hamilto-
nians including complex operatorial dependencies, like the
Auxiliary Field Di�usion Monte Carlo (AFDMC) [5, 6],
a substantial e�ort was made in order to produce local
versions of chiral e�ective interactions (local ‰-EFT po-
tentials) [7, 8]. These potentials, while retaining some of
the spirit of the chiral EFT, are plagued by a number of
necessary inconsistencies (such as in the introduction of

ú parthuis@theorie.ikp.physik.tu-darmstadt.de
† carlo.barbieri@unimi.it

regulators that break Fierz symmetry), making the basic
connection with the QCD symmetries feebler and feebler.

In this context the use of methods that can smoothly
work in momentum space, avoiding the necessity of this
further step of making the interaction local, would be
preferable. Non-local Hamiltonians can be easily handled
for finite nuclei by exploiting methods formulated in a
Fock space (i.e., the space of the Slater determinants
and including di�erent particle numbers) built on sets of
localised basis functions [9]. Several ab initio methods,
such as Many-Body Perturbation Theory (MBPT) [10],
Self-Consistent Green’s Function (SCGF) [11, 12], Cou-
pled Cluster (CC) [13, 14] or the In-Medium Similarity
Renormalization Group (IMSRG) [15, 16], can indeed pro-
vide results beyond light nuclei and have reached masses
above A≥100 [17–20] up to first estimations of 208Pb [21].
Working in momentum space also gives direct access to
quantities such as the momentum distribution or the
static structure factor that are not so easily computable
in coordinate space, and that are an important ingredient
for the estimate of further observables of interest. More-
over, momentum space calculations facilitates accurate
determinations of optical potentials [22], that would draw
a bridge between ab initio methods and the description
of dynamical processes for medium-heavy nuclei.

For the case of infinite matter, the SCGF approach
can be implemented directly in momentum space, which
allows to handle high-momentum components and there-
fore works equally well with both soft and hard interac-
tions [23, 24]. Moreover, the moderate computing require-
ments (sometimes not even requiring parallelisation) and
its general formulation at finite temperatures make SCGF
the method of choice to investigate a large range of phe-
nomena, such as nucleon propagation in the medium [25]
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grey lines are results obtained within the Hartree-Fock
approximation which in this case is equivalent to the
free Fermi gas result. We find a rather weak e�ect from
interactions of the order of ¥ 1% at nuclear saturation
density. These results are compatible with the response to
density excitations being dominated by the repulsive part
of the interactions and it does not show a pronounced
peak, which would instead be expected for purely attrac-
tive forces. As one can see in more detail in the inset,
showing results for fl = 0.16 fm≠3 only, the net e�ect of
adding 3NFs is to further suppress the oscillations in S(q)
and is consistent with the net repulsion brought by these
interactions.

In future work it would be interesting to also explore
the spin (axial) response of neutron matter as this will
provide further information about the mean free path of
neutrinos in bulk neutron matter at zero temperature.

IV. CONCLUSIONS

In this work we have extended the Configuration-
Interaction Monte Carlo method for nuclear physics to
include the e�ect of three-nucleon forces through the nor-
mal ordered two-body approximation. A key improvement
needed in order to achieve this progress was an appro-
priate storage scheme for the nuclear matrix elements
in momentum space. We have applied this extended
framework to the calculations of properties of pure neu-
tron matter such as the equation of state, the one-body
momentum distribution and the static structure factor.
The accurate calculation of the latter two quantities was
made possible by representing the many-body state in
a Slater determinant basis formulated directly in mo-
mentum space. While critical for both the energy per
particle and, to some extent, for the one-body momentum
distribution we found that the three-nucleon interaction
has only a modest e�ect on the static structure factor at
nuclear saturation density. This is a first step towards
fully ab initio simulations of the properties of bulk nuclear
matter starting from chiral nuclear interactions and lays
the groundwork for understanding the systematic e�ects
introduced by the necessary regulators. In a follow-up
work we plan to directly compare both local and non-local
low-momentum regulators and study how the breaking
of Fierz symmetry impacts the extraction of properties
of neutron matter at densities higher than nuclear satu-
ration. This is a unique feature which sets aside CIMC
with respect to more conventional Quantum Monte Carlo
methods formulated in coordinate space which are instead
limited to local regulators and for which the inclusion of
interactions beyond next-to-next-to-leading-order requires
more sophisticated approaches.
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Appendix A: Matrix element storage

One of the main perks of CIMC is that working di-
rectly in configuration space, the on-the-fly computation
of non-local ‰-EFT matrix elements is easy and fast, and
this does not require the pre-processing of the matrix ele-
ments needed by other many-body methods working in a
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Figure 3. Left panel. Momentum distribution of neutron
matter for the NNLOopt Hamiltonian plus 3NFs, computed in
a periodic box with 66 particles, for di�erent densities. Right

panel. Comparison of n(k) computed with and without 3NFs
for two cases, at half and twice saturation density. The mo-
mentum is expressed as a fraction of the Fermi momentum kF .

the same time, we observe a weaker e�ect compared to
predictions from other standard chiral N3LO forces in
the literature [24, 65, 66], showing that the NNLOopt
interaction is particularly soft.

The left panel of Fig. 3 shows that the n(k) curve is
almost independent from fl up to saturation density. On
the contrary, correlation e�ects increase for fl ¥ 2fl0 and
smooth the discontinuity in occupations at the Fermi sur-
face. The origin of this behavior can be traced to 3NFs
and be better understood from the right panel, were we
compare the momentum distributions computed with and
without 3NFs. At low density, the bulk of correlations
comes only from the two-body NNLOopt Hamiltonian and
the two curves are on top of each other. For densities
fl >0.20 fm≠3 the two-nucleon Hamiltonian provides a dis-
tribution very close to the one observed a lower densities
but the contribution of 3NFs becomes dominant.

Computations based on SCGF have pointed out that,
around saturation density, 3NFs have a quantitatively
small impact on n(k) and the fragmentation properties
of single-particle strength, even though they have a large
influence on the energetics and thermodynamics of the
system [24]. Our results from Figs. 1 and 3 confirm this
picture but suggest that correlations from 3NFs become
relevant at large densities.

C. Static Structure factor S(q)

The static structure function S(q) carries information
about the response of the system to density excitations
with momentum transfer equal to |q| = q. It can be
thought as the energy average of the (vector) dynamic

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

q [fm�1]
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0.4

0.6

0.8

1.0

S
(q

)

� = 0.02 fm�3
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� = 0.16 fm�3

HF

NN+3N
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3 4
0.96

0.98

1.00

1.02

Figure 4. Structure function of neutron matter for the
NNLOopt Hamiltonian with 66 neutrons for various densities
with and without 3NF. The inset shows more detail around
q = 2kF for saturation density fl = 0.16 fm≠3. We employ a
correction for finite size e�ects as described in Appendix B.

structure factor S(q, Ê) defined as

S(q, Ê) =
ÿ

n

|È�n|fl(q)|�0Í|
2 ”(En ≠ E0 ≠ Ê) , (5)

with |�nÍ the energy eigenstates of the nuclear Hamilto-
nian with eigenvalue En and fl(q) the Fourier transform of
the density operator. This quantity is proportional to the
di�erential scattering cross section of processes coupling
to the density of the system and transfering energy Ê and
momentum q. Upon integration over the energies, the
static structure factor can be then expressed as

S(q) =
⁄ Œ

0
dÊS(q, Ê) = È�0|fl(q)†fl(q)|�0Í . (6)

These quantities, together with the corresponding spin
(or axial) responses, carry important information about
neutrino scattering from neutrons in infinite matter. Pre-
vious calculations of S(q) where performed in the high-
temperature small-density regime employing either a virial
expansion [67] or lattice Monte Carlo methods exploiting
the similarity between low-density neutron matter and
a unitary Fermi gas which present no sign problem [68].
Using the CIMC we were able to extend these earlier
calculations and estimate the density static structure fac-
tor S(q) at zero temperature and large densities, beyond
the reach of either method. This is an important step
forward to characterize the response of neutron matter to
neutrinos using ab initio methods with realistic NN and
3N interactions from chiral EFT.

We present our results for S(q) in Fig. 4 for densities
ranging from fl = 0.02 fm≠3 (shown in blue) to nuclear sat-
uration density (shown in green). A detailed description
of our procedure to estimate S(q) from the configurations
sampled by CIMC is provided in Appendix B. The solid

4

NNLOopt Hamiltonian introduced in Ref. [41]. This inter-
action is optimized with respect to data in the two-nucleon
sector but 3NFs are still required to reproduce the EoS
for nucleonic matter and the driplines in neutron-rich
isotopes. Following Ref. [41] we add a next-to-next-to-
leading-order (NNLO) three-nucleon interaction with val-
ues of cD = ≠0.20 and cE = ≠0.36 for the low-energy
coupling constants, and apply local regulators depending
on momentum transfer [62] as discussed in [39] with a
value of � = 500 MeV/c.

For all results shown below we consider a periodic
box containing 66 neutrons, which is known to be the
optimal choice to minimize the finite size e�ects while still
requiring moderate computational costs. We have also
checked that our results are stable with respect to the
number of particles included and computations resulted
to be largely converged with respect to k2

max, as discussed
above.

In the following, we demonstrate results for di�erent
properties of interests for neutron matter—namely the
EoS, the momentum distribution, and the static response—
and discuss the e�ects arising form the inclusion of 3NFs.

A. Equation of State

The energy per particle as a function of density is
displayed in Fig. 1. This shows the three steps of the
CIMC calculations: the energy from the Hartree-Fock
approximation, the second-order Møller-Plesset perturba-
tion theory, and finally the prediction from Monte Carlo
di�usion. As expected for neutron matter, the bulk of
the correlation is already captured by a perturbative ex-
pansion but MP2 still over binds slightly. The CIMC
algorithm corrects this behaviour and at the same time
provides a solid variational upper bound to the ground-
state energy. It will be interesting to revisit this with
harder Hamiltonians or especially in symmetric nuclear
matter, where CIMC typically corresponds to resumming
high-rank particle-hole excitations [51]. The 3NFs have
the overall e�ect of making the system less bound across
the whole range of densities considered. Nevertheless, the
bulk of this repulsion originates solely in the mean-field
step. This is demonstrated by the correlation energies
Ecorr © E ≠ EHF reported in the bottom panel of Fig. 1.
Many-body correlations are not appreciably a�ected by
3NFs for dilute systems up to ≥ 1.2fl0 and instead gener-
ate more attraction at large neutron densities (although
not su�ciently strong to invert the repulsion generated
by 3NFs themselves at the mean-field level). The mod-
erate contribution of the 3NF can be traced back to the
design of the NNLOopt Hamiltonian, made to minimise
contributions beyond the two-nucleon force [41] and the
use of a local cuto� [63].

Fig. 2 benchmarks our results including 3NFs against
other computations available in the literature. The CCD
and CCD(T) are obtained from the same (two-nucleon)
NNLOopt Hamiltonian but with slightly di�erent choices
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Figure 2. Equation of state of neutron matter for the NO2B
NNLOopt Hamiltonian with 66 neutrons compared with CCD
with NO2B and CCD(T) with full 3NF results with NNLOopt
[39] and MBPT calculations at fourth order with various chiral
forces: EMN at NNLO and N3LO, NNLOsim at NNLO and
Hebeler+ at N3LO (see [61] and references therein). For EMN,
the band corresponds to the calculated theoretical uncertainty,
the two shades corresponding to NNLO and N3LO. The bands
for Hebeler+ and NNLOsim correspond to a variation of cuto�s
and/or renormalization scale.

for the low-energy constants cD and cE in the 3NF
sector [39]. Colored bands are uncertainty estimates
from fourth-order MBPT calculations for di�erent chi-
ral forces [61]. The present CIMC results fit well within
the prediction of all chiral Hamiltonians shown, which
gives further confidence in the predictive capabilities of
this method. Particularly remarkable is the fact that
CIMC points are e�ectively on top of the CCD results
and CCD(T) curves that are obtained with a nearly iden-
tical interaction.

B. Momentum distribution

Having gained confidence in our CIMC approach with
3NFs, we consider results for the momentum distribution
n(k) [64]. For fermionic systems, deviations from the
ideal Fermi-Dirac distribution inform on beyond-mean-
field correlations induced by a particular Hamiltonian.
The occupation of states as a function of their momentum
k is obtained directly from the Quantum Monte Carlo
walkers for each lattice point in the single-particle model
space.

The momentum distribution of neutron matter is dis-
played in the left panel of Fig. 3 for various densities
and the full Hamiltonian that includes 3NFs. The de-
pletion at zero momentum is found to be between 1-2%
and it is independent of the density. Such small e�ect is
in part due to the fact that neutron matter is generally
less correlated than symmetric nuclear matter [65]. At
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Figure 3. Left panel. Momentum distribution of neutron
matter for the NNLOopt Hamiltonian plus 3NFs, computed in
a periodic box with 66 particles, for di�erent densities. Right

panel. Comparison of n(k) computed with and without 3NFs
for two cases, at half and twice saturation density. The mo-
mentum is expressed as a fraction of the Fermi momentum kF .

the same time, we observe a weaker e�ect compared to
predictions from other standard chiral N3LO forces in
the literature [24, 65, 66], showing that the NNLOopt
interaction is particularly soft.

The left panel of Fig. 3 shows that the n(k) curve is
almost independent from fl up to saturation density. On
the contrary, correlation e�ects increase for fl ¥ 2fl0 and
smooth the discontinuity in occupations at the Fermi sur-
face. The origin of this behavior can be traced to 3NFs
and be better understood from the right panel, were we
compare the momentum distributions computed with and
without 3NFs. At low density, the bulk of correlations
comes only from the two-body NNLOopt Hamiltonian and
the two curves are on top of each other. For densities
fl >0.20 fm≠3 the two-nucleon Hamiltonian provides a dis-
tribution very close to the one observed a lower densities
but the contribution of 3NFs becomes dominant.

Computations based on SCGF have pointed out that,
around saturation density, 3NFs have a quantitatively
small impact on n(k) and the fragmentation properties
of single-particle strength, even though they have a large
influence on the energetics and thermodynamics of the
system [24]. Our results from Figs. 1 and 3 confirm this
picture but suggest that correlations from 3NFs become
relevant at large densities.

C. Static Structure factor S(q)

The static structure function S(q) carries information
about the response of the system to density excitations
with momentum transfer equal to |q| = q. It can be
thought as the energy average of the (vector) dynamic
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Figure 4. Structure function of neutron matter for the
NNLOopt Hamiltonian with 66 neutrons for various densities
with and without 3NF. The inset shows more detail around
q = 2kF for saturation density fl = 0.16 fm≠3. We employ a
correction for finite size e�ects as described in Appendix B.

structure factor S(q, Ê) defined as

S(q, Ê) =
ÿ

n

|È�n|fl(q)|�0Í|
2 ”(En ≠ E0 ≠ Ê) , (5)

with |�nÍ the energy eigenstates of the nuclear Hamilto-
nian with eigenvalue En and fl(q) the Fourier transform of
the density operator. This quantity is proportional to the
di�erential scattering cross section of processes coupling
to the density of the system and transfering energy Ê and
momentum q. Upon integration over the energies, the
static structure factor can be then expressed as

S(q) =
⁄ Œ

0
dÊS(q, Ê) = È�0|fl(q)†fl(q)|�0Í . (6)

These quantities, together with the corresponding spin
(or axial) responses, carry important information about
neutrino scattering from neutrons in infinite matter. Pre-
vious calculations of S(q) where performed in the high-
temperature small-density regime employing either a virial
expansion [67] or lattice Monte Carlo methods exploiting
the similarity between low-density neutron matter and
a unitary Fermi gas which present no sign problem [68].
Using the CIMC we were able to extend these earlier
calculations and estimate the density static structure fac-
tor S(q) at zero temperature and large densities, beyond
the reach of either method. This is an important step
forward to characterize the response of neutron matter to
neutrinos using ab initio methods with realistic NN and
3N interactions from chiral EFT.

We present our results for S(q) in Fig. 4 for densities
ranging from fl = 0.02 fm≠3 (shown in blue) to nuclear sat-
uration density (shown in green). A detailed description
of our procedure to estimate S(q) from the configurations
sampled by CIMC is provided in Appendix B. The solid

Configuration Interaction Monte Carlo (CIMC) for 3-nucleon forces:

pure nuclear matter
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Neutrino Oscillations and Liquid Ar detectors
DUNE experiment will measure long base line neutrino 
oscillations to: 
- Resolve neutrino mass hierarchy 
- Search for CP violation in weak interaction 
- Search for other physics beyond SM

Jlab experiment E12-14-012 (Hall A) 
Phys. Rev. C 98, 014617 (2018);

Ar (e,e’)X
Ti(e,e’)X 
C (e,e’)X

40Ar(e,e’p)  and  Ti(e,e’p)  data

40Ar

 Z=18
 N=22

ATi

 Z=22
N=24-28

Proton distribution in Ti 
similar to neutron in 40Ar 



Electron and ν scattering on 40Ar and Ti
Jlab experiment E12-14-012 (Hall A) 
[Phys. Rev. C 98, 014617 (2018)]

40Ar(e,e’p)  and  Ti(e,e’p)  data being analyzed
CB, N. Rocco, V. Somà, Phys. Rev. C100, 062501(R) (2019) 

Ti protons contribution 
(‘mix’) is nearly identical 
to neutrons in 40Ar.
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!  Ab initio applications to structure and reactions are becoming increasingly powerful. 
Systematic applications beyond testing forces and structure becoming available 

!Particle-phonon coupling (ADC3/FRPA) being implemented for open shell 

!The covariant version of Nambu-Gorkov formalism in SCGF: 
 
 
 
 

!Applications…      optical potentials, g.s. observables, one-nucleon spectroscopy 

!Systematic improvement of Nuclear DFT from ab initio in nuclear matter is promising 

- Minimises the number of diagrams to handle  

- Only basic topologies are retained. 

- Facilitates automatic diagram generation at higher orders.
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