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Outline

- Path Integral Monte Carlo / Molecular Dynamics:
   a) Theory;
   b) Applications:
      1) vibrational properties of high-pressure hydrogen;
      2) proton distribution in water clusters; 
 
- Ab-initio beta-decay simulations:
  a) Theory;
  b) Application: Nickel spectrum and rate;
  c) Improving the calculation of matrix elements (at least) in a few-body system; 

- Perspectives 
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Path Integral MD/MC

Ĥ=∑
I=1

3 Nn P̂ I
2

2M I

+∑
i=1

3 Ne p̂i
2

2mi

+V̂ n−e (R1 , ... ,R3N , x1 ,... , x3N )

Non-relativistic Hamiltonian: 
interacting system made by 

N
n
 nuclei (treated as Coulomb-point particles) 

and
N

e
 electrons

Goal → extract properties of the system such 
as vibrational properties,

pair distribution functions,
phase diagrams...
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Path Integral MD/MC
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Born-Oppenheimer:
Integrating out the 

Electronic degrees of freedom

Ĥ=∑
I=1

3 Nn P̂ I
2

2M I

+Û n(R1 ,... , R3 N )

Non-relativistic Hamiltonian: 
interacting system made by 

N
n
 nuclei (treated as Coulomb-point particles) 

and
N

e
 electrons

Goal → extract properties of the system such 
as vibrational properties,

pair distribution functions,
phase diagrams...
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Path Integral MD/MC

Born-Oppenheimer:
Integrating out the electronic degrees of freedom

Density Functional Theory  → Quantum Espresso (QE) engine. 
Functionals benchmarked by QMC.

Features of QE: planewave expansion of the wf/density, pseudopotentials.

How do we treat the ground state electronic many-body problem?

 Wf is simple a Slater determinant (Kohn-Sham approach):Ψ el=ΦSD
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Path Integral MD/MC

Born-Oppenheimer:
Integrating out the electronic degrees of freedom

Density Functional Theory  → Quantum Espresso (QE) engine. 
Functionals benchmarked by QMC.

Features of QE: planewave expansion of the wf/density, pseudopotentials.

Variational QMC →TurboRVB code. 
Features of TurboRVB: Slater/Pfaffian + Jastrow factor to represent the ground state wf.

Gaussian basis set.
 

How do we treat the ground state electronic many-body problem?

 Wf is simple a Slater determinant (Kohn-Sham approach):

Ψ el=ΦAS exp (J )

Ψ el=ΦSD
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Path Integral MD/MC

H PIMD≡H M=∑
i=1

3 N

∑
j=1

M

(
[Pi

( j )
]
2

2M I

+
1
2
miωM

2
[X i

( j)
−X i

( j−1)
]

2
)+∑

j=1

M

U (X1
( j) , ... , X3 N

( j)
)

Quantum partition 
function

Classical 
partition 

function of a 
chain of M 
beads (ring 

polymer)

Ĥ=∑
i=1

3N P̂ I
2

2M I

+Û (X1 ,... , X 3N )

D.M. Ceperley,  D.M. Ceperley,  Path integrals in the theory of condensed helium, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 1995, 67, 279–355Rev. Mod. Phys. 1995, 67, 279–355
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Path Integral MD

Path Integral Molecular Dynamics (PIMD):
 

● Molecular dynamics for quantum nuclei (full account of 
nuclear quantum effects);
 

● Sampling the exact thermal distribution of quantum 
nuclei →  including anharmonicity at all orders.

● Thermal effects included by a Langevin thermostat [1,2]

[1] - M. Ceriotti et al., [1] - M. Ceriotti et al., Efficient stochastic thermostatting of path integral molecular dynamics,Efficient stochastic thermostatting of path integral molecular dynamics, J. Chem. Phys. 133, 124104 (2010) J. Chem. Phys. 133, 124104 (2010)

[2] - F. Mouhat et al., [2] - F. Mouhat et al., Path Integral Langevin Dynamics driven by Quantum Monte Carlo forcesPath Integral Langevin Dynamics driven by Quantum Monte Carlo forces , J. Chem. Theory Comput. 13, 2400 (2017), J. Chem. Theory Comput. 13, 2400 (2017)

[3] - C. Cazorla and J. Boronat, [3] - C. Cazorla and J. Boronat, Simulation and understanding of atomic and molecular quantum crystalsSimulation and understanding of atomic and molecular quantum crystals , , Rev. Mod. Phys.Rev. Mod. Phys. 89, (2017) 89, (2017)

[3][3]
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G(iωn)=
−1

ωn
2
+Dharm

+Π(iωn)

PIMD → G(ω) from G(τ):

Ill defined inversion problem 
+

Stochastic noise 

But within PIMD we can access G for iω
n
=0  (Kubo-transform)

~
G=

1
β∫0

β

G (τ )d τ=
1
β
G(iω0)=

1
β

−1

Dharm
+Π(0)

The displacement-displacement correlator from PIMD gives exactly    ~G

~Gi j=
1
βZ
∑
l ,m

⟨m∣δ x̂ i∣l⟩ ⟨ l∣δ x̂ j∣m ⟩
e−β El−eβ Em

Em−El

Gi j (τ)=−⟨T δ x̂ i( τ)δ x̂ j(0)⟩

●  Poles of the phononic Green’s function 
(excitation energies weighted

 by displacement matrix elements)

●  Static Self-Energy (no linewidths)

   Matsubara Green’s function
τ

TM et al., TM et al., Probing anharmonic phonons by quantum correlators: A path integral approachProbing anharmonic phonons by quantum correlators: A path integral approach, J. Chem. Phys. 154, 224108 (2021), J. Chem. Phys. 154, 224108 (2021)

~
Gi l=

1

M 2 ⟨∑ j1

M
δ x i

( j1)∑ j2

M
δ x l

( j2) ⟩



11/5/2023 MONSTRE meeting  - T. Morresi

TM et al., TM et al., Probing anharmonic phonons by quantum correlators: A path integral approachProbing anharmonic phonons by quantum correlators: A path integral approach, J. Chem. Phys. 154, 224108 (2021), J. Chem. Phys. 154, 224108 (2021)

   High pressure (@500 GPa) hydrogen

I application: solid hydrogen vibrational properties PIMD 
+ 
DFT

application
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TM et al., TM et al., Probing anharmonic phonons by quantum correlators: A path integral approachProbing anharmonic phonons by quantum correlators: A path integral approach, J. Chem. Phys. 154, 224108 (2021), J. Chem. Phys. 154, 224108 (2021)

   High pressure (@500 GPa) hydrogen

phonon dispersion

I application: solid hydrogen vibrational properties
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F. Mohuat, M. Peria, TM et al., F. Mohuat, M. Peria, TM et al., Thermal dependence of the hydrated proton and optimal proton transfer, Thermal dependence of the hydrated proton and optimal proton transfer, arXiv:2301.01825, (2023)arXiv:2301.01825, (2023)

   Water clusters
 PIMD 

+ 
QMC

application

II application: pair correlation function in water
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   Beta-decay

x=
C A

CV

Aim: 
compute electronic spectra (‘easy’ task) 

and 
decay-rates (‘hard’ task)

J μ
L : leptonic current

Fermi’s golden rule:

Weak interaction
Hamiltonian

J μ , H : hadronic current
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x=
C A

CV

J μ
L : leptonic current

Fermi’s golden rule:

Weak interaction
Hamiltonian

Initial state: tensorial product of nuclear
and electronic wfs 

Final state: tensorial product of nuclear
and electronic wfs + (anti)neutrino

Non-orthogonal (different nuclei = different Hamiltonians !!!) 

J μ , H : hadronic current

Aim: 
compute electronic spectra (‘easy’ task) 

and 
decay-rates (‘hard’ task)

   Beta-decay
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To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.

TM et al., TM et al., Relativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic StructureRelativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic Structure ,,
Advanced Theory and Simulations, 1, 1870030 (2018)Advanced Theory and Simulations, 1, 1870030 (2018)

Generalized Dirac equation for N interacting fermions   

external
potential

Scalar
interaction

Vectorial
interaction

   Beta-decay
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   Beta-decay: leptonic current

For electrons → W
S
 = 0 and W

V
 is the (self-consistent Dirac-Hartree-Fock) Coulomb field

To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.

Simplified version: To find the electronic wavefunctions, we assume that the non-local 
exchange Fock term is substituted by an exchange potential V

ex
 derived by the non-

relativistic approximation to the free-electron gas theory [Salvat]

V ex [ρ]=
9
4
[ 3π ρ(r)]

1
3

[Salvat] – F. Salvat et al., [Salvat] – F. Salvat et al., Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z=1 - 92)Analytical Dirac-Hartree-Fock-Slater screening function for atoms (Z=1 - 92) , Phys. Rev. A 36, 467  (1987), Phys. Rev. A 36, 467  (1987)

single particle 
equations
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   Beta-decay: leptonic current

For electrons → W
S
 = 0 and W

V
 is the (self-consistent Dirac-Hartree-Fock) Coulomb field

To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.

Initial 
electronic 

state

Final 
electronic 

state

Final 
(anti)neutrino 

state

single particle 
equations
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   Beta-decay: leptonic current

For electrons → W
S
 = 0 and W

V
 is the (self-consistent Dirac-Hartree-Fock) Coulomb field

To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.

single particle 
equations

Leptonic
current:

determinant
of the overlap 

between 
initial and 

final electronic
states

The β-electron excites
a bound electron

The β-electron is
directly emitted
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   Beta-decay: hadronic current

W. Koepf and P. Ring, The spin-orbit field in superdeformed nuclei:
a relativistic investigation,  Z. Phys. A 339, 81 (1991)

For nuclei → W
S
 + W

V
  and  W

V
 – W

S  
are parametrized by Wood-Saxon shapes 

(W S−WV )p /n=−λ p /n

V p/n
0

1+e(r−R p /n
ls
)/ap /n

ls

(W S+W V )p/n=
V p/n

0

1+e
(r−R p/ n)/ap /n

Spin – orbit potential

V p /n
0
=V (1±κ

N−Z
N +Z

) Rp /n=r o
p /n A1 /3 Rp /n

ls =r o
ls, p /n A1 /3

To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.
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   Beta-decay: hadronic current

W. Koepf and P. Ring, The spin-orbit field in superdeformed nuclei:
a relativistic investigation,  Z. Phys. A 339, 81 (1991)
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Beta-decay: a computational perspective

Determinant of the matrix 
of overlaps between initial
and final electronic states

A, Z+1

e
β

e
B

detector

e
B 

or e
β
 ??

Within this approach
we take into account:

- Shake-up, shake-off;
- Non-orthogonality;
- Exchange effects;
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Beta-decay: a computational perspective

Determinant of the matrix 
of overlaps between initial
And final electronic states

By considering the submatrix
in which the emitted electron
is the one escaping from the 
atom, one can recover 
the traditional spectrum
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   Beta-decay

63

28
Ni

35
 →  

63

29
Cu

34
  + e

- 
+ νe The 63Ni nucleus (even–odd) decays 100% via 

β− to 63Cu (odd–even) 
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[Mougeot] - X. Mougeot et al., [Mougeot] - X. Mougeot et al., Consistent calculation of the screening and exchange effects in allowed β− transitionsConsistent calculation of the screening and exchange effects in allowed β− transitions , Phys. Rev. A 90, 012501  (2014), Phys. Rev. A 90, 012501  (2014)

63
Ni

63
Cu

1
2

3
2

Q(β-) = 66.945 keV

T
1/2

= 101.2 years

This spectrum is computed 
computing the nuclear matrix element
using a neutron in the 2p

1/2
 level and

a proton in the 2p
3/2

 level

This gives an half-life T
1/2

 ~ 0.1 years !!!!

Need to go beyond the simple shell model
to compute rates !!!
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   Beta-decay

S. Taioli et al., S. Taioli et al., 
Theoretical Theoretical 
Estimate of the Estimate of the 
Half-life for the Half-life for the 
Radioactive 134Cs Radioactive 134Cs 
and 135Cs in and 135Cs in 
Astrophysical Astrophysical 
ScenariosScenarios, The , The 
Astrophysical Astrophysical 
Journal, 933:158, Journal, 933:158, 
(2022)(2022)

Pi→ f=2πTr [ρ̂iΗβ S fΗβ] δ(W i−W f )

S f=∑f
|f ⟩ ⟨ f|

ρ̂i=pi|i ⟩ ⟨ i|

Generalizing to 
different 

temperatures 
and 

densities

where

and

134Cs 135Cs
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   Beta-decay: improving the framework
(at least for small systems)

Ψ=ψnnp
(1)
⊗ψnnp

(2 )
⊗Φ

Φ=∑k
C kP (T 1 , T 2)P(e1 , e2)[ gk (rT 1

, rT 2
, r e1

, r e2
)Θ(T 1 ,T 2)Θ (e1 , e2)]

Explicitly correlated Gaussian as basis set
to solve the fully non-adiabatic non-relativistic

many-body problem

We consider the beta-decay of the T
2
 molecule

ψnnp
(i) Nuclear wavefunction computed using hyperspherical harmonics

and realistic potential (chiral EFT)

gk (rT 1
, rT 2

, r e1
, r e2
)=e−(r−b)

T Ak (r−b)

A
k
 is a positive definite NxN matrix, where N is the number of particles (N=4 for Tritium)
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   Perspectives

- Path Integral Monte Carlo / Molecular Dynamics:
      1) study of the structural phase transition of H3S in the superconducting phase;
      2) machinery to develop Machine Learning potential energy surfaces;
      3) benchmarking 3-body potentials for Helium-4 in the superfluid phase; 
 

- Ab-initio beta-decay simulations:
  1) building a framework to include both hadronic and leptonic matrix elements
      at the highest level of accuracy;
  2) Tritium beta-decay: bechmark system.  
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Thanks for your attention!Thanks for your attention!

Michele Casula
(Sorbonne
 University)

Main 
collaborators:

European Centre of Excellence in Exascale Computing TREX European Centre of Excellence in Exascale Computing TREX 
(Targeting Real Chemical Accuracy at the Exascale)(Targeting Real Chemical Accuracy at the Exascale)

The work on hydrogen and water clusters was performed using HPC The work on hydrogen and water clusters was performed using HPC 
resources from GENCI-IDRIS (Grant 2021-0906493)resources from GENCI-IDRIS (Grant 2021-0906493)

Stefano 
Simonucci
(UNICAM)

Simone
Taioli (ECT*)

Giovanni
Garberoglio
(ECT*)
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Tracking H
3
S structural phase transition

Picture from: Picture from: 
High-pressure phase High-pressure phase 
diagram of hydrogen and diagram of hydrogen and 
deuterium sulfides from deuterium sulfides from 
first principles: Structuralfirst principles: Structural
and vibrational properties and vibrational properties 
including quantum and including quantum and 
anharmonic effects,anharmonic effects,
R. Bianco, I. Errea, M. R. Bianco, I. Errea, M. 
Calandra and F. Mauri, Calandra and F. Mauri, 
PRB 97, 214101 (2018)PRB 97, 214101 (2018)

asymmetric
symmetric
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From PIMD
simulations,
the average

position of H
atoms is 

alwaysalways
symmetric!!

Tracking H
3
S structural phase transition

 2.6  2.8  3  3.2  3.4

 x [Bohr]

potential (rescaled)
wavefunction distribution
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Tracking H
3
S structural phase transition

-1200

-800

-400

 0

 400

 800

 1200

 1600

 2000

Γ H N P Γ N

V=83.642 a0
3

F
re

q
u

en
cy

 [
cm

-1
]

Harmonic (6 x 6 x 6  q-grid)

-1200

-800

-400

 0

 400

 800

 1200

 1600

 2000

Γ H N P Γ N Γ H N P Γ N

V=90.853 a0
3

Harmonic (6 x 6 x 6  q-grid)
PIMD (2 x 2 x 2  q-grid)

Γ H N P Γ N Γ H N P Γ N

V=94.896 a0
3

Harmonic (6 x 6 x 6  q-grid)
PIMD (2 x 2 x 2  q-grid)

Γ H N P Γ N

-1200

-800

-400

 0

 400

 800

 1200

 1600

 2000

Γ H N P Γ N

V=99.077 a0
3

F
re

q
u

en
cy

 [
cm

-1
]

Harmonic (6 x 6 x 6  q-grid)
PIMD (2 x 2 x 2  q-grid)

-1200

-800

-400

 0

 400

 800

 1200

 1600

 2000

Γ H N P Γ N Γ H N P Γ N

V=103.467 a0
3

Harmonic (6 x 6 x 6  q-grid)
PIMD (2 x 2 x 2  q-grid)

Γ H N P Γ N Γ H N P Γ N

V=109.999 a0
3

Harmonic (6 x 6 x 6  q-grid)
PIMD (2 x 2 x 2  q-grid)

Γ H N P Γ N

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1000

-500

 0

 500

 1000

 85  90  95  100  105  110  115

(a)

M
o
d

e 
fr

eq
u

en
cy

 [
cm

-1
]

Volume [a0
3
]

3d-model DFT-BLYP

full-PIMD BLYP

3d-model QMC

Harmonic BLYP



11/5/2023 MONSTRE meeting  - T. Morresi

3

1
H

2
 →  

3

2
He

1
  + e

- 
+ νe

 Tritium beta decay

3

1
H

2

3

2
He

1

Q(β-) = 18.574 keV

T
1/2

= 12.2 years

Eur. Phys. J. C (2019) 79:204, https://doi.org/10.1140/epjc/s10052-019-6686-7Eur. Phys. J. C (2019) 79:204, https://doi.org/10.1140/epjc/s10052-019-6686-7

   Beta-decay
The 3H nucleus (even–odd) decays 100% via β− to 

3He (odd–even) 
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   Beta-decay

To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.

TM et al., TM et al., Relativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic StructureRelativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic Structure ,,
Advanced Theory and Simulations, 1, 1870030 (2018)Advanced Theory and Simulations, 1, 1870030 (2018)
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   Beta-decay

To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.

TM et al., TM et al., Relativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic StructureRelativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic Structure ,,
Advanced Theory and Simulations, 1, 1870030 (2018)Advanced Theory and Simulations, 1, 1870030 (2018)

Hartree-Fock approximation
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   Beta-decay

To deal with the relativistic weak-interaction Hamiltonian, we set up a relativistic 
mean-field framework to compute leptonic and hadronic matrix elements.

Hartree-Fock approximation

Single particle 
equations
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