
Detecting new fundamental fields with 
asymmetric binaries

Susanna Barsanti

(She/her)


PhD student 36° cycle

Gravity theory group @Sapienza 

University of Rome 

PhD seminar - 31/05/2023

- S.B+ : Phys.Rev.D 106 (2022) 4


- Phys. Rev. Lett 125, 141101 (2020)


- Nature Astron. 6 (2022) 4, 464-470 


Collaboration with  
A. Maselli, N. Franchini, L. Gualtieri, T. Sotiriou, P. Pani



Detection of GWs to test GR in strong-field regime 

Gravitational waves detection: LISA

General Relativity (GR) to describe gravity  

Laser Interferometer Space Antenna 

(LISA): future space based detector


Among the main targets: 


Extreme Mass Ratio Inspirals (EMRIs)

Proved with extreme accuracy in the weak-field regime



Detailed map of the binary spacetime 


Pinpoint even small deviations from GR 

Binary systems with a stellar mass compact object inspiralling into a massive black hole  

Primary of 


Secondary of , so that the mass ratio 


Emit GWs in the mHz, main targets of LISA

M ∈ (104,107) M⊙

μ ≪ M q = μ/M ∼ (10−6 − 10−3)

Complete  orbits before the plunge∼ 104 − 105

Using EMRIs to test GR



Detailed map of the binary spacetime 


Pinpoint even small deviations from GR 


Beyond GR theories with additional scalar fields

Binary systems with a stellar mass compact object inspiralling into a massive black hole  

Primary of 


Secondary of , so that the mass ratio 


Emit GWs in the mHz, main targets of LISA

M ∈ (104,107) M⊙

μ ≪ M q = μ/M ∼ (10−6 − 10−3)

Complete  orbits before the plunge∼ 104 − 105

Use EMRIs to detect scalar fields with LISA

Using EMRIs to test GR

GR + Scalar fields
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BH: 

NO-HAIR THEOREM: 


BHs are described only by three parameters: 
mass, spin, (negligible) electrical charge

gμν = g(0)
μν + hμν



EMRIs in General Relativity + scalar field
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EMRIs in General Relativity + scalar field

S [g, , Ψ] = S0 [g, ] + Sm [g, , Ψ]φ φ φ+αSc [g, φ]

Non minimal coupling 

Assumption: 

• The theory tends to GR as  


Case 1)  is dimensionless, and there is a            
no-hair theorem: i.e. black hole solutions as in GR
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EMRIs in General Relativity + scalar field
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S [g, , Ψ] = S0 [g, ] + Sm [g, , Ψ]φ φ φ+αSc [g, φ]

Non minimal coupling 

Assumption: 

• The theory tends to GR as  


Case 2)  =  , and there is a scaling in 
the BH hair

α → 0

α [mass]n

ζ ≡
α

(mass)n

ζ ≡
α

Mn
= qn α

mn
p

≪ 1

Any corrections to GR must depend on 

For the primary  

dscalar charge
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Let’s solve them in perturbation theory ! 

Leading order in  : motion along geodesics q

Field equations

 same as in GR

source term proportional to the 
scalar charge of the test body

for hairy BHs, if the little body is 
a BH, we find a relation d(α)

gμν = g(0)
μν + hμν φ = φ0 + φ1



ψ (s=0)(t, r, θ, ϕ) = ∫ dω∑
ℓm

R(s=0)
ℓm (r, ω)S(s)

ℓm(θ, ω)eimϕe−iωt

Perturbations: Teukolsky formalism - s=0

ψ(ω, r) ≡ r2 + a2R(ω, r)

s = 0

∂2ψℓm

∂r2
⋆

+ (ω2 − V) ψℓm = J

Homogenous solutions  and  with boundary conditions:ψH ψ∞

HORIZON INFINITY 
ψH = e−ik−r⋆

ψ∞ = eik+r⋆

Purely ingoing wave Purely outgoing wave 

General solution  obtained integrating over the source term: ψ

ψ(ω, r) = ψ∞ ∫
r⋆

−∞

ψHJdr′￼⋆

W
+ ψH ∫

+∞

r⋆

ψ∞Jdr′￼⋆

W

MASTER EQUATION 
Green Method 

k+ = ωk− = ω − ΩH

ΩH =
a

2Mr+

δφ−,+
ℓm = ∫

+∞

−∞

ψ∞,HJdr⋆

W
∝ δ(ω − mωp)

W = ψ′￼∞ψH − ψ∞ψ′￼−,
Wronskian 

ωp =
M1/2

r3/2 + aM3/2



Perturbations: GW emission

·E(±)
scal =

1
16π ∑

ℓ,m

ωm k± |δφ±
ℓm |2 ωm = mωp = m

M1/2

r3/2 + aM3/2

·EGW = ∑
i=+,−

[ ·E(i)
grav + ·E(i)

scal] = ·Egrav + ·Escal
·Escal ∝ d2

EXTRA emission simply added to the gravitational one! 

only depends on the scalar charge d

TOTAL EMISSION: 

ψ (s)(t, r, θ, ϕ) = ∫ dω∑
ℓm

R(s)
ℓm(r, ω)S(s)

ℓm(θ, ω)eimϕe−iωtSpheroidal harmonics decomposition: 

Teukolsky formalism for the gravitational and scalar perturbations: 
ψ (ω, r) ≡ r2 + a2R(ω, r)

∂2ψℓm

∂r2
⋆

+ (ω2 − V) ψℓm = J



Orbital Evolution

·E = − ·EGW

The emitted GW flux drives the adiabatic orbital evolution 

Balance law

From the rate of change of the integrals , we obtain the time derivatives of r E

Δϕ = 2∫
Tobs

0
ΔΩϕdt

And of the phases  related to the frequencies


The extra emission accelerates the binary coalescence and affects the GW phase, 
causing a dephasing w.r.t the case 


Compute the dephasing

ϕ

d = 0

dr
dt

= − ·E
dr

dEorb

ωp =
dΦ
dt

=
M1/2

r3/2 + aM3/2



Dephasing

 1 year of inspiral before the plunge 

Horizontal line: threshold of phase resolution by LISA of 
 for Δψϕ = 0.1 SNR = 30



Quadrupolar Approximation 
hTT

ij =
2
D (PiℓPjm −

1
2

PijPℓm) ··Iℓm

Iij = ∫ d3xTtt(t, xi)xixj = mpxixj

Strain measured by the detector 

,  detector pattern functions, related to (together with )F+ F× ι

h+ = − ( ··I11 − ··I22) (1 + cos2ι)/2 = 𝒜 cos[2Φ(t) + 2Φ0](1 + cos2ι)

h× = 2··I12 cos ι = − 2𝒜 sin[2Φ(t) + 2Φ0]cos ι

𝒜 =
2μ
D [Mω(t)]2/3

 :  source orientation angles 


 : direction of the BH spin 

(θs, ϕs)
(θ1, ϕ1)

in a Solar System reference frame 

GW Signal



• Red line: threshold under which the signals are significantly different -  for 


• After year the faithfulness is always smaller than the threshold for scalar charges as small as 
 

ℱ ≲ 0.994 SNR = 30

1
d = 0.01

Faithfulness

⟨h1 |h2⟩ = 4ℜ∫
fmax

fmin

h̃1( f )h̃⋆
2 ( f )

Sn( f )
df

Estimate of how much two signals differ:

LISA power spectral density  Inner product



What about the LISA ability to measure the scalar charge?  

This first analysis suggest that LISA will be able to detect 
scalar charges as small as d ∼ 0.005 − 0.01



FIM: Relative error for the scalar charge

• Inject parameters to generate the waveform

• Fisher Information Matrix analysis


• Results for  ,  , M = 106M⊙ χ = 0.9 mp = 10M⊙

⃗θ = ( ln M, ln mp, χ, ln D, θs, ϕs, θ1, ϕ1, r0, Φ0, d)

LISA potentially 
able to measure 
scalar charges 
with % error !  

  Γij = ⟨ ∂h
∂θi

∂h
∂θj ⟩

θ= ̂θ

Σ = Γ−1



• EMRIs in a vast class of modified theories of gravity + scalar fields


• The extra energy loss accelerates the binary coalescence and leaves an imprint in the 
emitted GW 


• The dephasing and the faithfulness show how scalar charges of  could be 
possibly detectable by LISA


• The Fisher analysis shows how LISA could be able to measure scalar charges with 
accuracy of the order of percent 


d ∼ 0.01

Conclusions

To look forward .. 

Bayesian analysis 

Thank you for attention! 

Self force corrections  

Easy extensions to multiple fields and couplings 



Back up slides 



S [g, φ, Ψ] = S0 [g, φ] + αSc [g, φ] + Sm [g, φ, Ψ]

1
2

∂μφ1∂νφ1 −
1
4

gμν (∂φ1)2Gμν =

□ φ = −
16πα

−g
δSc

δφ
∼ ζ □ φ +16π∫ m′￼(φ)

δ(4)(x − yp(λ))

−g
dλ

m(φ0) = mp

m′￼(φ0) = −
d
4

mp

δS
δgμν

δS
δφ

φ = φ0 +
mp d

r̃
+ O (

m2
p

r̃2 )
 to be evaluated at 


In a reference frame centered on the particle :


Matching with the scalar field eq. outside the world tube: 

(tt)-stress energy tensor in the weak field limit: matter density: 

m, m′￼ φ0

ζ ≪ 1

−
16πα

−g
δSc

δgμν
∼ ζGμν +8π∫ m (φ)

δ(4)(x − yp(λ))

−g

dyα
p

dλ
dyβ

p

dλ
dλ

Sc ∼ M−nS0

Field equations



• White dashed line:           
threshold of phase resolution by 
LISA of  for Δψϕ = 0.1 SNR = 30

Dephasing: circular orbits

•  increases with the 
spin of the primary 
Δψϕ

•  significant:                                                   
for  it can be larger than 

 radians 

Δψϕ
M ≲ 106M⊙

103



Quadrupolar approximation hTT
ij =

2
D (PiℓPjm −

1
2

PijPℓm) ··Iℓm

Iij = ∫ d3xTtt(t, xi)xixj = mpxixj

F+ =
1 + cos2 θ

2
cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ

F× =
1 + cos2 θ

2
cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ

cos θ(t) =
1
2

cos θs −
3

2
sin θs cos[ϕt − ϕs]

ϕ(t) = α0 + ϕt + tan−1 [ 3 cos θs + sin θs cos[ϕt − ϕs]
2 sin θs sin[ϕt − ϕs] ]

Φ(t) → Φ(t) + Φ′￼(t)RAU sin θs cos(2πt/T − ϕs)

Strain measured by the detector 

Doppler shifts: 

GW Signal 

LISA pattern functions 

ψ polarization angle

h(t) = ∑
n

hn(t) hn(t) =
3

2 [F+(t)A+
n (t) + F×(t)A×

n (t)]

In an ecliptic-based system: 

[L. Barack and C. Cutler, Phys. 
Rev. D 69 (2004) 082005]



• Measurement of the scalar charge with a relative error smaller than , with a probability 
distribution that does not have any support on  at more than -

10 %
d = 0 3 σ

• Corner plot of the probability 
distribution of , after  
months of observation, with 

 and 


• Vertical lines: -  distribution for 
each waveform parameters 


• Colored contours:  and 
probability confidence intervals

(M, μ, χ, d) 12

d = 0.05 SNR = 150

1 σ

68 % 95 %

Probability distribution

• Scalar charge  highly correlated with  and anti-correlated with  and d μ M χ



From the scalar charge to the coupling constant ! 

For theories with hairy BHs, it is possible to find a relation d(α)

Example of theories: scalar Gauss-Bonnet gravity (sGB)

[α] = (mass)n
αSc =

α
4 ∫ d4x

−g

16π
f (φ) 𝒢

n=2

𝒢 = R2 − 4RμνRμν + RμναβRμναβGauss-Bonnet invariant

f(φ) = eφ

Dimensionless coupling constant β ≡ α/m2
p

d = 2β +
73
30

β2 + O(β3)

f(φ) = φ d = 2β +
73
60

β3 + O(β4)

bounds on  can be translated to bounds on d β



α /km = 4.67+0.73
−0.77 α /km = 9.312+0.092

−0.092

• Probability density function of  obtained from the joint probability distribution of  
and  obtained from the Fisher analysis (SNR=150) 


• Vertical lines: confidence interval


• Even for , the probability density functions do not have support with 

α μ
d

90 %
d = 0.05 α = 0

Coupling constant 

Shift-symmetric Gauss Bonnet gravity 

α ≃ 2dμ2 −
73
240

d3μ2

Sc =
α
4 ∫ d4x

−g

16π
f(φ)𝒢

f(φ) = φ

For hairy BHs, if the little body is a BH, we find a relation d(α)


