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Overview

• Why large-scale?

• The bottleneck of molecular simulations.

• Short introduction to Neural Networks.

• Neural-Network methods for molecular simulations.

• My research topic: application to Phase-Change materials.



Why large scale?
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Growth of the crystal 

front in thin Sb.
Dragoni et al., 

Nanoscale (2021).

Liquid-Liquid critical point for a water model.

Gartner et al., Phys. Rev. Lett. (2022).

• Long-wavelength vibrational modes.

• Slow relaxation dynamics near criticality.

• Study of collective phenomena.

• Free energy computations.

• Reduction of finite-size effects.

Simulation of crystals can be done on small scale (unit cell), because 
of their spatial symmetry.

But amorphous/disordered systems (liquids, glasses, biomolecules, 
complex systems) require large spatial and time scales:



Born-Oppenheimer approximation
Electronic+nuclear (e+n) Schrödinger equation:
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Coulomb interaction 

between systems a,b.

Kinetic energy of system a.

Legend

Number of electrons/nuclei.

Spatial coordinates.

separation of energy/time scales separate the wavefunction:

Solve the electron problem first, at fixed nuclear positions:



Classical Dynamics of the nuclei

The electrons induce an effective interaction potential on the nuclear problem:
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In a classical treatment, the dynamics follows Hamilton equations:

Effective Hamiltonian for the nuclei:



Classical Molecular Dynamics algorithm
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Pseudocode (from [2])



Classical Molecular Dynamics algorithm
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Pseudocode (from [2])

Bottleneck!
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Interaction Potential

PES U(r)
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U

Configuration

a.k.a. Potential Energy Surface (PES)

Slow implementation.

Accurate.

Dynamical chemical bonds.

Fast implementation.

Inaccurate in most cases.

Static chemical bonds.

For example,

Density Functional 

Theory (DFT)

For example,

Lennard-Jones 

pairwise potential.



How to build a Neural-Network model for the PES
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N nuclear 
positions

N local 
environments

N Atomic 
Fingerprints

N local 
energies

Total energy 
U = sum of 

local energies

Model:

Loss function.

Minimization algorithm.

Training procedure.

Flow chart from [1].
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Wait, but what is a 

Neural Network?



Basics of Artificial Neural Networks

Biological neuron McCulloch & Pitts (1943) model

binary input/output with a sum threshold θ

θ
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Basics of Artificial Neural Networks

Biological neuron Rosenblatt's Perceptron (1958) model

linear mapping + non-linear threshold
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Perceptron

non-linear activation 

function σ

(e.g. tanh, sigmoid, …)
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linear mapping 

with weights (w,b)

The decision boundary is a hyperplane:

The task of finding the optimal parameters 

(w, b) for classifying x can be seen both as:

• Linear classification:

find the best hyperplane 

dividing the two classes.

• Linear regression:

find the best fitting 

hyperplane to the 

boundary between the 

two classes.

x

y

x1

x2
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Non-linear Regression with Multi-Layer Perceptrons (MLP)

x y

Single Layer
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x y

Multi-Layer Universal approximation theorem:

A MLP is a universal approximator, if 

deep enough.

Non-linear Regression with Multi-Layer Perceptrons (MLP)
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x y

Multi-Layer Universal approximation theorem:

A MLP is a universal approximator, if 

deep enough.

Non-linear Regression with Multi-Layer Perceptrons (MLP)

How to find the optimal parameters, 

at fixed network architecture?

1. Define a loss function L(w) between 

the target y and the prediction ŷ = f(x|w).​

2. Use a minimization algorithm on L(w).



Common problems in NN applications

• Overfitting and generalization problems
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x

y



Common problems in NN applications

• Overfitting and generalization problems

• Dataset size and variability

• Choice of the input features
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Neural-Network Interaction Potential

N nuclear 

positions

N local 

environments

N Atomic 

Fingerprints

N local 

energies

Total energy U 

= sum of local 

energies

The form of U is invariant 

to particle permutations 

and independent of 

system size.

Input of the 

Neural Network.

Output of the 

Neural Network.

They must be differentiable, 

to compute derivatives of U 

(forces and stress tensor).
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Neural-Network Interaction Potential

N nuclear 

positions

N local 

environments

N Atomic 

Fingerprints

N local 

energies

Total energy U 

= sum of local 

energies

The form of U is invariant 

to particle permutations 

and independent of 

system size.

This is where methods 

get different!
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Behler-Parrinello (2007)

N nuclear 
positions

N local 
environments

N Atomic 
Fingerprints

N local 
energies

Total energy 
U = sum of 

local energies
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2-body and 3-body symmetry functions 

with manually-tuned parameters.

with

A MLP for each 

species, each with 2 hidden 

layers of ~40 nodes.

Example architecture for a 

3-species system.
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Good results on Silicon
with 48 symmetry functions

Predicted Radial pair 

correlation (red)

compares well with 

the DFT one (black).

Energy error: ~ 5 meV/atom​

Force error: ~ 200 meV/Å



Mattioli-Sciortino-Russo (2023)

N nuclear 
positions

N local 
environments

N Atomic 
Fingerprints

N local 
energies

Total energy 
U = sum of 

local energies
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2-body and 3-body descriptors with 

learnable exponential weights. A MLP with 2 hidden 

layers of ~25 nodes.

Inspired by the attention 

mechanism in deep learning.
Architecture for a monospecies system
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Amazing performance when trained on the “mW” water potential 

(a classical single-species PES but with non-trivial 3-body interaction)

With only 10 atomic descriptors:

• Energy error ~ 0.4 - 1.3 meV/atom​.

• Force error ~ 6.7 meV/Å.

Total energy

Diffusion coefficient
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Amazing performance when trained on the “mW” water potential

Predicted radial pair correlations perfectly match the real ones:

At different densities... ... and even in extrapolated 

crystal configurations!



Conclusion and Future work

The bottleneck of large-scale quantum-accurate molecular dynamics 
simulations is the computation of forces.

Neural-network parametrization1 allows to compute forces both accurately and 
efficiently.

Part of my project is to apply the very recent method by Mattioli et al. [4] 
to some Phase-Change Materials (alloys of Ge, Sb, Te) for large-scale 

simulations in the supercooled phase.
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1 And other machine-learning 

methods which I did not 

cover today.



Thanks for your attention!
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