The Jamming Transition

Everything you (possibly never) wanted to know
about packing spheres

Rafael Diaz Herndndez Rojas
(Chimera Group)

Rome, May 17th, 2023
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The sphere packing problem [in d dimensions]

How to place (infinitely) many hyper-spheres as efficiently as possible?

d 7.‘.d/2 p
2 . P
sphere: ||x]|? = Z xi _ 2 volume: vy(r) = —I‘(% n 1)7“
a=1 9 5 . N
no overlaps: ||x; — x,||° > 4r density: ¢ = ﬁvd(r)

d=4,567 = 777

4
Kepler’'s Conjecture) d=8: ¢* =35 ~0.25

’ *
Moryn V/';Jzovs\ko
(Fields Medal winner 2022)

12

d=24: ©o" = 5 ~0.0019 3
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Jamming 1n Nature

In a jammed state all the degrees of freedom
are completely blocked (frozen);
due to, e.g.,, geometric frustration.
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“Give, and it will be given to you. A good measure,
pressed down, shaken together and running over,
will be poured into your lap. For with the measure

you use, it will be measured to you."
Luke 6:38




Same components... many Dependence on the
DIFFERENT macrostates (;,?) e (packing) protocol
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The jamming (rigidity) transition
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Phase Diagram of Hard-Spheres
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The jamming (rigidity) transition

Adapted from [van Hecke, J. Phys.: Cond. Matter (2010)]
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The jamming (rigidity) transition

Adapted from [van Hecke, J. Phys.: Cond. Matter (2010)]

Phase Diagram of Hard-Spheres
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The jamming (rigidity) transition

Adapted from [van Hecke, J. Phys.: Cond. Matter (2010)]
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The jamming (rigidity) transition | |" A fimensions

Adapted from [van Hecke, J. Phys.: Cond. Matter (2010)]
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How to understand (a bit of)
Jamming using
Statistical Physics?

d— o0 V

d=23

(Exact) Mean-field theory developed by
Charbonneau, Kurchan, Parisi, Urbani,
Zamponi : =2010-today

No analytical theory available !(
Good agreement between numerics
and mean-field theory :D
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Thermodynamics phases and free energy:
Landscape picture

F(T)=U—-TS = —Tlog Z(T)

[thermodynamics def]

[Stat. Mech. definition]

10



Thermodynamics phases and free energy:
Landscape picture

[thermodynamics def]
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q [order parameter]

This is the picture in Hard Spheres
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[Charbonneau, Kurchan, Parisi, Urbani, Zamponi, Nat. Comms, (2014)] 11



Jammed configuration: Each minimum (i.e. jommed
minimum of a very rough - packing) corresponds to a
free energy landscape realization of a network of

contacts (N)

[Charbonneau, Kurchan, Parisi, Urbani, Zamponi, Nat. Comms, (2014)] 11



Jammed configuration: Each minimum (i.e. jommed
minimum of a very rough - pocklng corresponds to a
free energy landscape realization of a network of

contacts (/)

@e can test this model of t@
landscape by measuring the
similarity (a.k.a.overlop)
between different packingsl!

“‘Ord ~
\ poro:neetrer“ q Na A Nb /

Y
e
025

[Charbonneau, Kurchan, Parisi, Urbani, Zamponi, Nat. Comms, (2014)]
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[Artiaco, RDHR, Parisi, Ricci-Tersenghi, PRE, (2022)]
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PROGRESSIVE increase in Free energy landscape has

TO a COMPLEX structure
the similarity (overlap) ‘ (NOT made of simple
between contacts networks convex basins) ’

[Artiaco, RDHR, Parisi, Ricci-Tersenghi, PRE, (2022)]
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b) We have NO idea how to compute (analytically) even basic
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c) Do NOT believe in o
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Department of Physics “A. Pontremoli,” University of Milan, via Celoria 16, 20133 Milan, Italy
and Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, United Kingdom
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(pressure)

(A “crash course” on) Thermodynamics of Hard Spheres

[Berthier, Charbonneau, Jin, Parisi, Seoane, Zamponi, PNAS, (2016)]
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Jamming transition happens here
[universality class]



Free energy landscapes in disordered systems
[hard case]

[Cugliandolo, Ann. Rev. Cond. Matt, (to appear)]
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Same critical exponents
independently of how
the Jamming transition

is reached!!

102 103 10%

1 —6
‘ 107107 1071 1072 1072 107t 10° 100 10> 10% 10* 10° 10° 10" 10° [Charbonneau, Corwin, Denis, RDHR, Ikeda,
NYA=7) Parisi, Ricci-Tersenghi, PRE, (2021)]
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Hard-Spheres Jamming as an optimization problem

Inspired by [Donev et al. J. Comp. Phys. (2004)] & [Torquato and Jiao, PRE (2010)]

r, —r; +8S;

. displacements Density is
Given g = {O'z} - | (FEQINTQANQEMENLS) | e maximized

— 1 |
S — {Sz} without overlaps!
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Inspired by [Donev et al. J. Comp. Phys. (2004)] & [Torquato and Jiao, PRE (2010)]

. displacements
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S = {Sz}

r, —r; +8S;
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— maximized
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max [’ G14
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The Jamming LOP Linear Optimization Problem
LOP <« easy

max [’
Fij(ga F) : ‘rij‘Q + 21'7;j * 8ij > FO‘,?J-
2 . .
O(‘Sij\ )—VNegllglble Vi<i<j<N

If SOSSOJ — |Sij|<< |I‘7;j|




The Jamming LOP

First (insufficient) attempt

it oS s = sy < |rijl

@, (‘Sij ‘2) - Negligible

-~ -~

Different optimizers of th
\ linear and exact OPs! /

Linear Optimization Problem
LOP < easy

max I’
Fz'j(g, F) . ‘I‘ij‘Q -+ QI',L'j . Sij Z FO',L-QJ-
Vi<i<j <N




The new confgurohon

rz%rz_l_sz()'% F*O’
1. Does not have" any overlops

2. Has a larger density

The CHAIN of Jamming LOPs

It can be used to

‘ generate a NEW
instance of the

joamming LOP




The CHAIN of Jamming LOPs

The new confgurotion
It can be used to

r; < r;+8; o, — VI*o,

1. Does not have' any overlaps ‘ generate o NEW
instance of the

2. Has a larger density jamming LOP




Convergence




Convergence

Forces <> Lagrange multipliers (>0)
(active dual variables)

Fij(§7 F) = FO‘,LZ]- — 21'7;]' * S5 — |rij|2 S 0
Fij — )\z’j >0




Convergence

Forces <> Lagrange multipliers (>0)
(active dual variables)

Fij(§7 F) = FO‘,LZ]- — 21'7;]' * S5 — |rij|2 S 0
Fij — )\z’j >0

For any Optimal Solution
(KKT conditions)

Mechanical equilibrium

and isostaticity
N.=d(N—-1)+1




CALIiPPSO.jl

(Chain of Approximated Linear Programming for Packing
pounes Spherical Qbjects)
isostatic
jommed
packings

() —————— Optional (but recommended for
speed)
const d; N, o8, L = 3, 808,
ro, Xs@ = 2 I F ation(d, N, @0, L)

packing, info, I vs t, Smax vs t, isostatic vs t = I n! (Xs@, rO; (0=0.2*L, max iters=500)

z in rattlers = 0

inish 3 ninutes; |

ng for overlaps after convergen

of radius R= 0.114
fraction E B.014

tatic: true and in mechanical equilibrium: true




Better initial condition:

L Ll+—p>1
©YJ
« Gaps and forces
N =16, 384 obtained
t. ~ 30 iterations independently
w5 = 0.644 * Force balance v

* Isostaticity v

COMPLEXITY: 7T ~ N3




Better initial condition:

L Ll+—p>1
©YJ
« Gaps and forces
N =16, 384 obtained
t. ~ 30 iterations independently
w5 = 0.644 * Force balance v

* Isostaticity v

COMPLEXITY: 7T ~ N3

4 Study the landscape ) (" Verify jamming critical )
[Artiaco, Baldan, Parisi, PRE, 2020] exponents in H5=33
and dynamics p(f) ~ f% 6=042311
[RDHR, Parisi, Ricci-Tersenghi, Soft Mat., 2021] g(h) ~h™7, v =0.41269
[Charbonneau, Corwin, Dennis, RDHR, lkedaq,

\_ of HS near jamming ) \ Porisi, Ricci-Tersenghi et al, PRE, 2021]
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