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I. The Hierarchy Problem, Flavor and CFT’s

II. Bounding operator dimensions in CFT4



~~ scale invariant dynamics

~~ conformal invariance

Asg

¢ stability of A;r < Ay characterized by dimensionality of perturbations at fixed point

AL = MO A\NE) = A(AUV)< " )do_4

do —4 > 0 irrelevant f/*_—
do —4 =0 marginal F
do —4 < 0 relevant f/)_—

Ex. scalar mass ANE) = (_) ?




Natural Hierarchy

A.. There exists no strongly relevant operator

most relevant 4_d0 — <1 )\(E) _ )\O (AUV)

Ex: Yang-Mills theory 4 — d(’) — bg2 (E ) > ()

B. Strongly relevant operators exist, but can be controlled by a symmetry

controlled by
chiral symmetry

4 quark mass in QCD d o =3
Ex.
4 scalar masses in MSSM d@ — 2 SUSY + chiral symm



Why we are interested in mass hierarchies

W MPlanck > UFermi

w To explain smallness of couplings ( features ) by power counting

Ex: Standard Model

1 1 K
Loy = Ld§4 | AI/OI/ | A?gog | A%OAS:Q_I_

Ay ~ 10" GeV Ay 2 10%°CeV Ay 2 10° TeV

Ap 2 10TeV

Smallness of B, L, F violation nicely explained if A, >> UFermi

Ydys



Standard @ yi; H F; Fj Ay — 00 * U/ij unaffected

Model

¢ extra unwanted Flavor

) effects decouple
dim =4
A2 qiq59Kq¢
®  very relevant operator A2 H'H
makes A,, — 00 problematic
Technicolor H = @Zw dimension ~ 3
Weinberg 79
Susskind ‘79 © no scalar singlet with dimension < 4
L L _
® Yukawas Ay;j HF;F; as relevant as A2 qiq;9kq¢
uv uv
Ideally * Flavor d g — 1

* Hierarchy d cg — 4



Conformal Technicolor

Luty-Okui o4
from walking TC
A Holdom ’86
UV
strongly coupled SaUSE weakly'coupled
CET " N\SN\JS\VSN\S L S P
Nl avalia
[ — ~ ~
H = COINPOSILE chuk AW aaa

AIR — 1 TGV

running 7 < / (Ao ) (A,n) (AUV)d_l <4
uv) — IR N AT
Yukawas 3 vr If A,

2(d—2)

Flavor K AUV By o ]
breaki > < NCH model dependent
reaking A%R AIR




Kk~ 1072
A,y > 10° TeV

K~ Yqls ~ 10°°
A,y > 10TeV




Ayt g
4.01

dgtg = 2dg
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> Interesting region is not attainable at weak coupling or large N

> Is it at all compatible with prime principles?

& Unitarity + SO(4,2):  dypy =1 = dy2 =2 Mack "77
> Can one derive a theoretical upper bound on (] b2 asa function of ( b !

& Standard proof for d=1 not extendable to d = 1+ €



I. The Hierarchy Problem, Flavor and CFT’s

II. A bound on operator dimensions in CFT4



Formulation of the problem

1

OPE ¢(z)p(0) = —= [I+27°¢°(0)+ ...... ]
L N
1 higher dimension
lowest dimension higher spin

scalarin @ X @

What can one say on Ao asa functionof d 7



CFT redux

Ky, 0(0)] =0

irrep of SO(4,2): (A, j1,j2) === primary operator
1D, 0(0)] =iA0(0)

. L I
spin £ primaries: (A, 5% 5) O ATy, symmetric traceless
descendants Oy, ...0y Om.-. Lig
¢ =0 A>1

Unitarity
>0 A>2+/ Mack 77



Method based on study of 4-point function

1 1
I. Conformal symmetry (P(21)(22)P(25)P(14)) = —2d 2d g(u,v)
12 34
T3, T T,
T =T T 22 YT R g

137724 137724

g(u,v) knows about operator content of the CFT

I1. Conformal partial waves decomposition

basic idea derived using OPE »




primary operator

of spin ¢ and dim A descendands:

2 Lo hw
fully fixed by d, ¢ , A

¢ transforms like ¢(z,)o(x,)

2 ]‘ !
(6(2,) () () B(,))= 2@: |>\o>=< = <1+%:>\0290(u,v))

<> Unitarity = sum with positive weights ‘)\(9 ‘2

o go(u,v) = gag(u,v) = conformal bloks

spherical harmonics of
conformal group

T~/

Ferrara,Gatto,Grillo 1974



Casimir operator 1 5 1 B
of conformal group C= 9 p My + D7 — §(PMKM + K, P,) = LaLa
Cae =00 +2)+A(A—4)

C- OA,g — [LA, [LA, OA,EH — _CA,eOA,E

e differential equation Du,v gA7g(u, U) — Ca ¢ gA’g(UJ, ’U)

* boundary condition provided by short distance behaviour

general solution: Dolan-Osborn 03

Y 2z
=) - [fA—I—f(Z)fA—K—Q(Z) — (2 < 2)

gA,E(ua ’U) — 2£ . _

falx) = 2?2, F) (8/2,8/2, 8; )

u=2z2z, v=((1-2)(1-2)



III. Crossing symmetry

1 4 2 4
A —
’ >=< >=< € must be even
2 3 1 3

1 4

Z (u,v) < (v, u)

Al

1 4
B)
Z 2>=<3

A0

2 3

. / N - non-trivial
sum rule — Z Anel“Fa,n,(z, Z) constraint

A on spectrum !!




vectors in functioipace
o
o 9 _ belongs to a
1 = E : |)\A7€‘ Fd,A,ECZ? Z) convex cone
A/

Given d, the broader the hypothetical spectrum { A, ¢} the wider the cone

1
no scalar composite
with finite dimension Anin < Ae

sum rule violated critical case sum rule satisfied



| B 2n,2m infinite
Function space { F ( z, Z) } H { F } vector space

B 2 10,0 -
L= Z)‘A,EFA,E P2 = 92 97 F (2, 2)
AL gy —
2
2 2,0
0 = ZAMFM
Al
2 0,2
0 = ZAMFM
Al

Projecting sum rule on subspaces: weaker but necessary constraint

Ex.: Cone projected on plane F(®9 =

F(070)

A

F(Z,O) :F(O,Q)




Warm up exercise o d=1
& project on subspace (F*Y, [V?)

(> 2
A=10+2

FO2)

FCO

> projected sum rule implies that only twist 2 operators can appear in OPE !

<> novel proof of known result that d=1 scalar is a free field



Less trivial ¢ d>1
exercise & projecting on subspace  (F (2,0)  F (072))

FO2)

F(Z,O)

critical cone is determined by energy momentum tensor ray

(A =4,0=2)

Do <Ac g ’;:::”‘E“ A, =24+v/d—1+0(d—-1)

v =~ 2.929



A(Fayg) >0

analytically for (A, ) in the spectrum

» 1 linear functional A

A1) <0

General A in A(f) — Z anmazizﬁgTZf(z, Z)

derivative basis

P\
|
'\
|
N

4+ given hypothetical spectrum, A(F A, g) > 0 defines convex subspace P of A space

4 minimize A(1) on P

' !
*+ A(1Dmin< O =) Ssum rule cannot be satisfied Linear Program .



In practice

4 restrict to finite # of derivatives = minimize A(1) on finite dimensional subspace of P

4 restrict to finite (A, ¢ ) trial set e include spins up to oo
¢ include dimensions up to A, 4z
un'neceSSaty ot e discretize A\
<tronger constrd * to cover loose ends add to trial set the ‘asymptotic ray’
obtained by simple analytic formulae for derivatives at

Al — 00

Finite dimensional Linear Programming: use routine in Mathematica



Best bound to date Oy = 20

A = 200
A =001
Nyin 55 e
Rychkov, Vichi o9
10 - 1T 12 13 12 15 16 17
d
A<2407Vd—1+ 21(d—1)+0.43(d—1)>

Bound is trivially satisfied in known 4D CFTs (supersymmetry, large N)



Same bound in 2-dimensional CFT

A ] YO T T T T T T TR
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d

Crossing + Unitarity constraint seem to capture the relevant physics !



D =4 —c¢ Wilson-Fisher O(NN) model

dy = (1-35)+ siniapee O

® square root behaviour!
* numerical coefhicient slightly ‘violates’ bound for N=1,2

* bound strictly apply only to D=4

not clear that we should worry * not clear how to extend it to 4-€



Back to Higgs doublet

H' x H; = 56;; + T4 7-;? = (singlet) + (triplet)

1

> We did not use information about global quantum numbers

> The obtained boundison A = min(Ag, A7)

> The ‘Higgs mass’ operator relevant to hierarchy is however §

<> Analogy with O(N) Wilson-Fisher fixed point suggests Ag > A7,

so that actual bound on A\ S may be weaker

Anyway let us pretend
the bound applies to A ¢

Voila !




Adding ‘flavor’ to the CFT (global group G)
arXiv:1009.5985

¢O¢ ¢5 ¢Oz ¢5
Ex: gb real irrep >é< o I
_ r
¢ ¢
B Y Qb ¢fy
dZ ors Grl10) = 5 D" Tl Gulv,u)
Fierz
aﬂ% ZC TO«HB
# independent sum rules = # of (G X parity channels

G=SO(N)  ¢;xp; = Sij ® Tyj © Ay [
- 3 sum rules
¢; = N ¢ even ¢ odd



4+ C(Can derive upper bound A ;<A™ for dg close to 1

+ A M0 grows with d¢

+ Amin 5 2 smoothly when de — 1

+ SO(N) (3 sum rules) X (3 channels) =» 9 times more complex

4 ‘Numerical instability’ when trying to refine bound

G || v =50 SO(3) SO(4) SU(2) SU(3)
1.063 (k = 2) 1.032 (k=2) 1.017 (k = 2) 1.016 1.003
d., A
1.12 (k = 4) 1.08 (k = 4) 1.06 (k = 4) (k=2) [ (k=2)

d+=value of d¢ at which A ™ crosses 4



Summary

Conformal blocks + Unitarity + Crossing

V= Z/| Mol? Go

O

4 powerful constraint on spectrum of scalar operators (motivated by pheno)

4 more widely applicable to constrain whole operator spectrum & couplings \



Ex: lower bound on central charge

min Cyp

2.0' .,. . 

05|

.......

..or current (' o <JMJV>

CT X <TM,/Tp0> Cr

N=16

S Cr=4/3

V=12 w S

.............. d
1.4 1.6 1.8 20

Poland, Simmons-Duffin ’10
Rattazzi, Rychkov, Vichi 10

A,



possible future directions

4 try to stregthen bound on A by correlating it with sensible constraints
on central charges (like suggested by exp bound on S-parameter)

4 think of more efficient algorithm, taking into account the continuity of the
constraints

4 or think of alternative way to package the information in the sum rule,
try and use analyticity of gA ¢

4 3D CFTs and make contact with condensed matter systems:
(watch: closed form of conformal blocks unknown in odd D !)



