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I.  The Hierarchy Problem, Flavor and CFT’s

II.  Bounding  operator dimensions in CFT4



ΛUV

ΛIR

∼	 	 scale invariant dynamics

∼	 	 conformal invariance

❖   stability of                               characterized by dimensionality of  perturbations at fixed pointΛIR � ΛUV
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Natural Hierarchy

Strongly relevant operators exist, but can be controlled by a symmetryB.

Ex.

✦ quark mass in QCD

✦ scalar masses in MSSM

controlled by 
chiral symmetry

SUSY + chiral symmdO = 2

dO = 3

There exists no strongly relevant operator

most relevant 4− dO = �� 1 λ(E) = λ0

�
ΛUV

E

��
A.

Ex: Yang-Mills theory 4− dO = bg2(E) > 0



Why we are interested in mass hierarchies

MPlanck � vFermi

To explain smallness of couplings ( features ) by power counting

Smallness or absence of breaking effects nicely explained if 

Ex: Standard Model

Λ �L ∼ 1014 GeV Λ �B >∼ 1015 GeV Λ �F >∼ 105 TeV

Λ �F >∼ 10 TeV

κ = 1

κ = ydys

Smallness of  B, L, F violation nicely explained if ΛUV � vFermi

LSM = Ld≤4 +
1

Λ �L
O �L +

1
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�B
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κ

Λ2
�F
O∆S=2 + . . .



yij HF̄iF̄j
•        unaffected 
• extra unwanted Flavor
   effects decouple

dim =4

}

Λ2
UV H

†
H very relevant operator             

makes ΛUV → ∞

ΛUV → ∞

problematic 

Technicolor

no scalar singlet with dimension < 4

1
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q̄iqj q̄kq�
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Yukawas yij

Λ2
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☹

☹
☺
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as relevant as 

Standard
Model

H = ψ̄ψ dimension ～ 3
Weinberg ’79
Susskind ‘79

Ideally
dH†H → 4
dH → 1•  Flavor

•  Hierarchy 



Conformal Technicolor Luty-Okui 04

from  walking TC
Holdom ’86ΛUV

strongly coupled 
CFT

H = composite
operator

weakly coupled
Standard
Model

gauge

“Yukawa”

H

f

f̄

running
Yukawas

yf (ΛUV ) = yf (ΛIR)
�

ΛUV
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�d−1

<∼ 4π

Flavor
breaking
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Λ2
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κ model dependent

ΛIR = 1 TeV
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< 0.1 tuning
in hierarchy

and
ytop < 4π

∆�k < �SM
K

κ ∼ 10−2

ΛUV > 103 TeV
κ ∼ ydys ∼ 10−8

ΛUV > 10 TeV
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 Interesting region is not attainable at weak coupling or large N

Unitarity + SO(4,2) : 

  Can one derive a theoretical  upper bound on            as a function of          ?

  Is it at all compatible with prime principles?

  Standard proof for d=1 not extendable to  d = 1+ ε  

Mack ’77

dH†H

dH†H = 2dH

dH

dφ2 = 2dφ = 1

dφ2 dφ



I.  The Hierarchy Problem, Flavor and CFT’s

II.  A bound on operator dimensions in CFT4



OPE

lowest dimension 
scalar in φ× φ

higher dimension
higher spin

Formulation of the problem

What can one say  on Δ0   as a function of  d   ?

φ(x)φ(0) =
1

x2d

�
I + x∆0φ2(0) + . . . . . .

�



CFT redux

spinℓprimaries: Oµ1...µ�

descendants

irrep of SO(4,2): (∆, j1, j2)

∂ν1 . . . ∂νnOµ1...µ�

primary operator

(∆,
�

2
,
�

2
)

Unitarity � = 0 ∆ ≥ 1

� > 0 ∆ ≥ 2 + � Mack ’77

[D,O(0)] = i∆O(0)

[Kν ,O(0)] = 0

symmetric traceless



Method based on study of  4-point function

I. Conformal symmetry �φ(x1)φ(x2)φ(x3)φ(x4)� =
1

x2d
12

1
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34

g(u, v)

u =
x2

12x
2
34

x2
13x

2
24

v =
x2

14x
2
23

x2
13x

2
24

xij = xi − xj

g(u, v)

   II.  Conformal partial waves decomposition

              knows about operator  content of the CFT

basic idea derived using OPE



φ(x1)φ(x2) =
1

x2d
12

�
�

O

λO
�
Cd,∆,�(x12)O + . . . . . .

��

primary operator
of spin ℓand dim  Δ descendands:

•fully fixed by d ,ℓ, Δ
• transforms like 

=
�

O

λO O

φ(x1)φ(x2)

�φ(x1)φ(x2)φ(x3)φ(x4)� |λO|2=
�

O

  Unitarity  →  sum with positive weights |λO|2

gO(u, v) ≡ g∆,�(u, v) =  conformal bloks spherical harmonics of
conformal group∼

Ferrara,Gatto,Grillo 1975

⎨ ⎧⎧
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1
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34
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Casimir operator
of conformal group C =

1
2
MµνMµν + D2 − 1

2
(PµKµ + KµPµ) ≡ LALA

C · O∆,� = [LA, [LA,O∆,�]] = −c∆,�O∆,�

c∆,� = �(� + 2) + ∆(∆− 4)

• differential equation Du,v g∆,�(u, v) = c∆,� g∆,�(u, v)

• boundary condition provided by short  distance behaviour

general solution: Dolan-Osborn 03

g∆,�(u, v) =
(−)�

2�

zz̄

z − z̄

�
f∆+�(z)f∆−�−2(z̄)− (z ↔ z̄)

�

fβ(x) ≡ xβ/2
2F1 (β/2,β/2,β;x)

u = zz̄, v = (1− z)(1− z̄)



III. Crossing symmetry 

A) =
1

2 3

4
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must be even �

B)
�

∆,�

1

2 3

4
1
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4
�

∆,�

=

sum rule

Fd,∆,�(z, z̄) =
vdg∆,l(u, v)− udg∆,l(v, u)

ud − vd

non-trivial
constraint 

on spectrum !!

(u, v) ↔ (v, u)

1 =
�

∆,�

�
|λ∆,�|2Fd,∆,�(z, z̄)



 belongs to a 
convex cone 

Given d, the broader the hypothetical spectrum { Δ, ℓ}  the wider the cone

∆(� = 0) > ∞
no scalar composite

with finite dimension

∆(� = 0) ≥ ∆min∆(� = 0) ≥ ∆c
∆min < ∆c

sum rule violated critical case sum rule satisfied

vectors in function space

1 =
�

∆,�

�
|λ∆,�|2Fd,∆,�(z, z̄)

1 1 1



Function space infinite 
vector  space

. . . .

Ex.:  Cone projected on plane F (0,0) = 0

F (2,0) F (0,2)

. . . 

�
F 2n,2m

�

1 =
�

∆,�

λ2
∆,� F 0,0

∆,�

0 =
�

∆,�

λ2
∆,� F 2,0

∆,�

0 =
�

∆,�

λ2
∆,� F 0,2

∆,�

Projecting sum rule on subspaces:  weaker  but necessary constraint

F (0,0)

{F (z, z̄) }

F 2n,2m ≡ ∂2n
z+z̄∂

2m
z−z̄F (z, z̄)

����
z=z̄= 1

2



Warm up exercise    d = 1
   project on subspace

∆ = � + 2
� ≥ 2

(F 2,0, F 0,2)

projected sum rule implies that only twist 2 operators can appear in OPE !

  novel proof of known result that  d=1  scalar is a free field

F!2,0"

F!0,2"

F
!2,0" !F

!0,2" l!0

l!2,4,6...

"!2

"!
l#2



Less trivial
 exercise

   d > 1
   projecting on subspace (F (2,0), F (0,2))

critical cone is determined by energy momentum tensor ray 

(∆ = 4, � = 2)

∆0 > ∆c
∆0 = ∆c

∆0 < ∆c

γ ≈ 2.929

∆c = 2 + γ
√

d− 1 + O(d− 1)

F!2,0"

F!0,2"

l!0

l!2,4,6...

"!4, l!2

"!2

"c!3



analytically
∃ linear functional Λ

Λ(F∆,�) ≥ 0

Λ(1) < 0

for (Δ,ℓ) in the spectrum

General  Λ in
 derivative basis

Λ(f) =
�

n,m

anm∂2n
z+z̄∂

2m
z−z̄f(z, z̄)

���
z=z̄= 1

2

defines convex subspace P of Λ space

✦ minimize Λ(1) on P

✦ Λ(1)min < 0        sum rule cannot be satisfied

Λ(F∆,�) ≥ 0✦ given hypothetical spectrum,

Linear Program !

1



In practice

✦ restrict to finite # of derivatives = minimize  Λ(1)  on finite dimensional subspace of  P 

• include spins up to
• include dimensions up to
• discretize

�max
∆max

∆

✦ restrict to finite (Δ,ℓ) trial set

•  to cover loose ends add to trial set the ‘asymptotic ray’
obtained by simple analytic formulae for derivatives at
∆, �→∞

Finite dimensional Linear Programming: use routine in Mathematica

necessary but 

weaker constraint

un-necessary 

stronger constraint



Best  bound  to date

∆ step = 0.01

d

�max = 20
∆max = 200

Rychkov, Vichi 09

∆min

Bound is trivially satisfied in known 4D CFTs  (supersymmetry, large N)

∆ < 2 + 0.7
√

d− 1 + 2.1(d− 1) + 0.43(d− 1)
3
2



Same bound in 2-dimensional CFT

d

∆min

Crossing + Unitarity  constraint seem to capture the relevant physics !



D = 4− � Wilson-Fisher O(N) model

• square root behaviour!
• numerical coefficient slightly ‘violates’ bound for N=1,2

not clear that we should worry •  bound strictly apply only to D=4
•  not clear how to extend it to 4-ϵ

dφ =
�
1− �

2

�
+ N+2

4(N+8)2 �2

∆φ2 = (2− �) + 2
N+8�



Back to Higgs doublet

H
†
i × Hj = S δij + TA τ

A
ij ≡ (singlet) + (triplet)

 We did not use information about global quantum numbers

 The obtained bound is on 

 The ‘Higgs mass’ operator  relevant to hierarchy is however  S

 Analogy with O(N) Wilson-Fisher fixed point suggests                          ,  

     so that actual bound on               may be weaker

∆S > ∆T

∆ ≡ min(∆S ,∆T )

∆S

Voilà !
Anyway let us pretend 
the bound applies to ∆S
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ℓeven ℓodd

=

Adding ‘flavor’ to the  CFT   (global group  G)
arXiv:1009.5985

Ex:         real irrepφ
φα

φβ φγ

φδ
φα

φβ φγ

φδ

r
r

1
ud

�

r

T r
αβγδ Gr(u, v)

1
vd

�

r

T r
αδγβ Gr(v, u)=

Fierz
T r

αβγδ =
�

r�

Crr�
T r�

αδγβ

# independent sum rules    =    #  of   G × parity  channels

φi = N
G = SO(N) φi × φj = Sij ⊕ Tij ⊕ Aij

3 sum rules



✦   Can derive upper bound Δs <Δsmin  for dϕ close to 1

✦ Δsmin grows with dϕ 

✦Δsmin → 2  smoothly  when  dϕ → 1 

✦  SO(N)          (3 sum rules) ×  (3 channels)   ➡      9 times more complex

✦ ‘Numerical instability’ when trying to refine bound

d* = value of   dϕ    at which Δsmin crosses 4 



Summary

Conformal blocks + Unitarity + Crossing

✦  powerful constraint on spectrum of scalar operators (motivated by pheno)

✦  more widely applicable to constrain whole operator spectrum & couplings

�V =
�

O

�

|λO|2 �GO



CT =
1

|λTµν |2Ex: lower bound on central charge

Poland, Simmons-Duffin ’10
Rattazzi, Rychkov, Vichi ’10

CJ ∝ �JµJν�...or current  

CT ∝ �TµνTρσ�



possible future directions

✦  try to stregthen bound on  Δs  by correlating it with sensible constraints
      on central charges (like suggested by exp bound on S-parameter)

✦ think of more efficient algorithm, taking into account the continuity of  the           
constraints

✦  or think of alternative way to package the information in the sum rule,
      try and use analyticity of

✦  3D CFTs and make contact with condensed matter systems:
      (watch: closed form of conformal blocks unknown in odd D !)

g∆,�


