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Survey results



● NVIDIA proposes the use of CUDA from Python through the numba package
● Numba was initially born as an open-source CPU-only accelerator, while the 

modules that interfaced with the GPU (accelerate) were proprietary. Then, 
they decided to merge into a single open-source project

● accelerate gets rewritten and becomes PyCULib, which integrates, for 
example, cuBLAS and other GPU-accelerated algebra libraries.

● PyCULib has not been officially updated for 6 years

● cupy to the rescue!

Python and CUDA: a tough story

https://github.com/numba/pyculib
https://cupy.chainer.org/


Warm up: performance
import cupy as cp

import numpy as np

import time

# NumPy and CPU Runtime

cpus = time.perf_counter()

x_cpu = np.ones((1000, 1000, 200))

cpue = time.perf_counter()

print(f"Time consumed by numpy: {cpue - cpus}")

# CuPy and GPU Runtime

s = time.perf_counter()

x_gpu = cp.ones((1000, 1000, 200))

e = time.perf_counter()

print(f"\nTime consumed by cupy: {e - s}")

print(f"\nspeed-up is by a factor {(cpue-cpus)/(e-s)}")

Let's go and see what happens with 
this code



Warm up: performance
Let's go and see what happens with 
this code.

It may take several seconds when 
calling a CuPy function for the first time 
in a process. This is because the CUDA 
driver creates a CUDA context during 
the first CUDA API call in CUDA 
applications.

CuPy uses on-the-fly kernel synthesis: 
when a kernel call is required, it 
compiles a kernel code optimized for 
the shapes and dtypes of given 
arguments, sends it to the GPU device, 
and executes the kernel

import cupy as cp

import numpy as np

import time

# NumPy and CPU Runtime

cpus = time.perf_counter()

x_cpu = np.ones((1000, 1000, 200))

cpue = time.perf_counter()

print(f"Time consumed by numpy: {cpue - cpus}")

# CuPy and GPU Runtime

s = time.perf_counter()

x_gpu = cp.ones((1000, 1000, 200))

e = time.perf_counter()

print(f"\nTime consumed by cupy: {e - s}")

print(f"\nspeed-up is by a factor {(cpue-cpus)/(e-s)}")



Warm up: measure correctly

import cupy as cp
import numpy as np
import time
# NumPy and CPU Runtime
cpus = time.perf_counter()
x_cpu = np.ones((1000, 1000, 200))
cpue = time.perf_counter()
print(f"Time consumed by numpy: {cpue - cpus}")
# CuPy and GPU Runtime
s = time.perf_counter()
x_gpu = cp.ones((1000, 1000, 200))
e = time.perf_counter()
print(f"\nTime consumed by cupy: {e - s}")

print(f"\nspeed-up is by a factor {(cpue-cpus)/(e-s)}")

Because GPU executions run 
asynchronously with respect to CPU 
executions, a common pitfall in GPU 
programming is to mistakenly measure 
the elapsed time using CPU timing 
utilities (such as 
time.perf_counter() from the 
Python Standard Library or the 
%timeit magic from IPython), which 
have no knowledge in the GPU runtime.

Use the internal benchmark function 
instead!

from cupyx.profiler import benchmark
import cupy as cp
import numpy as np

def cpu_init():
return np.ones((1000, 1000, 200))

def gpu_init():
return cp.ones((1000, 1000, 200))

cpu_bench = benchmark(cpu_init, n_repeat=20)
gpu_bench = benchmark(gpu_init, n_repeat=20)



Warm up: measure correctly

import time

start_gpu = cp.cuda.Event()

end_gpu = cp.cuda.Event()

start_gpu.record()

start_cpu = time.perf_counter()

out = my_func(a)

end_cpu = time.perf_counter()

end_gpu.record()

end_gpu.synchronize()

t_gpu = cp.cuda.get_elapsed_time(start_gpu, 

end_gpu)

t_cpu = end_cpu - start_cpu

What cupyx.profiler.benchmark internally do:

from cupyx.profiler import benchmark
import cupy as cp
import numpy as np

def cpu_init():
return np.ones((1000, 1000, 200))

def gpu_init():
return cp.ones((1000, 1000, 200))

cpu_bench = benchmark(cpu_init, n_repeat=20)
gpu_bench = benchmark(gpu_init, n_repeat=20)



Cupy basics

1. cupy can be used in many cases 
as a replacement for numpy!

2. current device concept
○ All CuPy operations (except for multi-GPU 

features and device-to-device copy) are 
performed on the currently active device.

○ device can be allocated

with cp.cuda.Device(1):

x = cp.array([1, 2, 3, 4, 5])

x.device

<CUDA Device 1>

https://docs.cupy.dev/en/stable/reference/index.html#cupy-reference


Cupy basics

Data transfer: move data between host and devices.

x_cpu = np.array([1, 2, 3])

x_gpu = cp.asarray(x_cpu) # move the data to the current device.

with cp.cuda.Device(0):

x_gpu_0 = cp.ndarray([1, 2, 3]) # create an array in GPU 0

with cp.cuda.Device(1):

x_gpu_1 = cp.asarray(x_gpu_0) # move the array to GPU 1

x_cpu = x_gpu.get() # move the array to the host

x_cpu = x_gpu.asnumpy() # same



Cupy basics

Agnostic code: exploit 
compatibility with numpy

import cupy as cp

import numpy as np

from cupyx.profiler import benchmark

# Stable implementation of log(1 + exp(x))

def softplus(x):

xp = cp.get_array_module(x)

print("Using:", xp.__name__)

return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

x = np.random.random(int(1e5))

x_gpu = cp.asarray(x)

cpu_bench = benchmark(softplus, (x,), n_repeat=10)

gpu_bench = benchmark(softplus, (x_gpu,), n_repeat=10)



User defined kernels

CuPy provides easy ways to define three types of CUDA kernels: 

- elementwise kernels → cp.ElementwiseKernel() class
- reduction kernels → cp.ReductionKernel() class
- raw kernels → cp.RawKernel() class



User defined kernels

- An elementwise kernel refers to a function or operation that is applied independently to 
each element of one or more input arrays. The same operation is performed 
simultaneously on multiple data elements in parallel.

- A reduction kernel refers to a function or operation that combines multiple elements of 
an input array into a single result by applying a reduction operation such as the sum, 
minimum, maximum, or average of the elements. Reduction kernels are used to 
efficiently compute global aggregates or statistics from large arrays.

- A raw kernel is a set of operation on data entirely defined by the user.

Ref: https://docs.cupy.dev/en/stable/user_guide/kernel.html

https://docs.cupy.dev/en/stable/user_guide/kernel.html


User defined kernels

Instead of using the mentioned cupy classes, and in order to keep things more 
pythonic, we're going to make use of two handy tools from cupy, both usable as 
classical python decorators:

- kernel fusion
- JIT kernel definition.



Kernel fusion

Inside the function, we perform 
elementwise computations on the 
input arrays, which include sin(), cos(), 
and sqrt() operations. The @cp.fuse() 
decorator allows these computations 
to be efficiently combined into a single 
kernel, reducing memory transfers and 
kernel launch overhead.

@cp.fuse() decorator is particularly 
useful when there are multiple 
elementwise computations to be 
performed, as it helps optimize the 
execution and reduce overhead.

import cupy as cp

from cupyx.profiler import benchmark

# Define input arrays

a = cp.arange(10)

b = cp.arange(10, 20)

c = cp.arange(20, 30)

# Define an elementwise computation using @cp.fuse() decorator

@cp.fuse()

def elementwise_computation(x, y, z):

return cp.sin(x) + cp.cos(y) / cp.sqrt(z)

# Invoke the elementwise computation

bench = benchmark(elementwise_computation, (a, b, c), 

n_repeat=10)



Kernel fusion

another example not involving 
analytical math functions

import cupy as cp

from cupyx.profiler import benchmark

# Define input arrays

b = cp.arange(10, 20)

c = cp.arange(20, 30)

@cp.fuse(kernel_name='squared_diff')

def squared_diff(x, y):

return (x - y) * (x - y)

print(benchmark(squared_diff, (b, c), n_repeat=10))



JIT kernel definition

Both styles to launch the kernel, as shown 
above, are supported. The first two entries 
are the grid and block sizes, respectively. grid 
( RawKernel style (128,) or Numba style 
[128]) is the sizes of the grid, i.e., the 
numbers of blocks in each dimension; block 
((1024,) or [1024]) is the dimensions of each 
thread block.

The compilation will be deferred until the first 
function call. CuPy’s JIT compiler infers the 
types of arguments at the call time, and will 
cache the compiled kernels for speeding up 
any subsequent calls.

import cupy as cp

from cupyx import jit

@jit.rawkernel()

def elementwise_square(x, y, size):

tid = jit.blockIdx.x * jit.blockDim.x + jit.threadIdx.x

ntid = jit.gridDim.x * jit.blockDim.x

for i in range(tid, size, ntid):

y[i] = x[i] * x[i]

size = cp.uint32(2 ** 22)

x = cp.arange(size, dtype=cp.float32)

y = cp.empty((size,), dtype=cp.float32)

elementwise_square((128,), (1024,), (x, y, size)) # RawKernel 

style

assert (y == x * x).all()

elementwise_square[128, 1024](x, y, size) # Numba style

assert (y == x * x).all()



JIT kernel definition

Typing rule
The types of local variables are inferred at the first assignment in the function. The 
first assignment must be done at the top-level of the function; in other words, it 
must not be in if/else bodies or for-loops.

Limitations
JIT does not work inside Python’s interactive interpreter as the compiler needs to 
get the source code of the target function.



Memory Management

CuPy uses memory pool for memory allocations by default. The memory pool 
significantly improves the performance by mitigating the overhead of memory 
allocation and CPU/GPU synchronization.

There are two different memory pools in CuPy:

● Device memory pool (GPU device memory), which is used for GPU memory 
allocations.

● Pinned memory pool (non-swappable CPU memory), which is used during 
CPU-to-GPU data transfer.



Memory Management

The a_cpu array resides on 
CPU, so the mempool does 
not know him

import cupy

import numpy

mempool = cupy.get_default_memory_pool()

pinned_mempool = cupy.get_default_pinned_memory_pool()

# Create an array on CPU.

# NumPy allocates 400 bytes in CPU (not managed by CuPy memory 

pool).

a_cpu = numpy.ndarray(100, dtype=numpy.float32)

print(a_cpu.nbytes) # 400

# You can access statistics of these memory pools.

print(mempool.used_bytes()) # 0

print(mempool.total_bytes()) # 0

print(pinned_mempool.n_free_blocks()) # 0



Memory Management

Now the array a is brought to 
GPU

import cupy

import numpy

mempool = cupy.get_default_memory_pool()

pinned_mempool = cupy.get_default_pinned_memory_pool()

a = cupy.array(a_cpu)

print(a.nbytes) # 400

print(mempool.used_bytes()) # 512

print(mempool.total_bytes()) # 512

print(pinned_mempool.n_free_blocks()) # 1



Memory Management

When the array goes out of scope, the 

allocated device memory is released and 

kept in the pool for future reuse.

You can clear the memory pool by calling 

free_all_blocks.

a = None # (or `del a`)

print(mempool.used_bytes()) # 0

print(mempool.total_bytes()) # 512

print(pinned_mempool.n_free_blocks()) # 1

mempool.free_all_blocks()

pinned_mempool.free_all_blocks()

print(mempool.used_bytes()) # 0

print(mempool.total_bytes()) # 0

print(pinned_mempool.n_free_blocks()) # 0



Memory Management: set memory limit for your code

Memory limits can be set via 

environment variables
$ export CUPY_GPU_MEMORY_LIMIT="1073741824"
$ export CUPY_GPU_MEMORY_LIMIT="50%"



Memory Management: set memory limit for your code

Or calling the proper APIs (which 

overrides env vars). This is also nice 

since it lets you set a limit for each 

device.

import cupy

mempool = cupy.get_default_memory_pool()

with cupy.cuda.Device(0):

mempool.set_limit(size=1024**3) # 1 GiB

with cupy.cuda.Device(1):

mempool.set_limit(size=2*1024**3) # 2 GiB



Best practices

As you probably know, it's important to identify hotspot in your code, before even starting to define an 

optimization strategy.

The code needs to be profiled in order to know what code section to attack first: profiling tools help you 

to see how much time do you spend event in a single line of code, and cupy has a wonderful practical 

function to help you do that.



Best practices

We saw in first slides about the 

cupyx.profiler.benchmark tool.

Let's recall what it does internally. 

This tool runs a few warm-up runs to 

reduce timing fluctuation and 

exclude the overhead in first 

invocations.

import cupy as cp

import time

start_gpu = cp.cuda.Event()

end_gpu = cp.cuda.Event()

start_gpu.record()

start_cpu = time.perf_counter()

out = my_func(a)

end_cpu = time.perf_counter()

end_gpu.record()

end_gpu.synchronize()

t_gpu = cp.cuda.get_elapsed_time(start_gpu, end_gpu)

t_cpu = end_cpu - start_cpu



One-time Overhead

Context initialization

It may take several seconds when calling a CuPy function for the first time in a process. This is because the CUDA driver 
creates a CUDA context during the first CUDA API call in CUDA applications.

Kernel compilation

When a kernel call is required, it compiles a kernel code optimized for the dimensions and dtypes of the given 
arguments, sends them to the GPU device, and executes the kernel.

CuPy caches the kernel code sent to GPU device within the process, which reduces the kernel compilation time on further 
calls.

The compiled code is also cached in the directory ${HOME}/.cupy/kernel_cache (the path can be overwritten by 
setting the CUPY_CACHE_DIR environment variable). This allows reusing the compiled kernel binary across the process.



Differences with numpy

Although you can generally use cupy 
as a replacement for numpy, there are 
some differences you may encounter.

Let's see some of them:

- casting from float to integer. 

np.array([-1], dtype=np.float32).astype(np.uint32)
→ array([4294967295], dtype=uint32)
cupy.array([-1], dtype=np.float32).astype(np.uint32)
→ array([0], dtype=uint32)

np.array([float('inf')], dtype=np.float32).astype(np.int32)
→ array([-2147483648], dtype=int32)
cupy.array([float('inf')], dtype=np.float32).astype(np.int32)
→ array([2147483647], dtype=int32)

Data types in cupy arrays cannot be non numeric (strings, objects) in cupy!



Differences with numpy

Reductions output

numpy returns a scalar when 
performing reductions, while cupy 
returns a zero dimensional array.

Since cupy's scalars are aliases for 
numpy's, returning scalars would 
require synchronization. You can 
always cast yourself to a scalar if 
needed.

print(type(np.sum(np.arange(3))))
print(type(cp.sum(cp.arange(3))))

<class 'numpy.int64'> 
<class 'cupy.ndarray'>

Data types in cupy arrays cannot be non numeric (strings, objects) in cupy!



Concurrently executes two kernels

Suppose you have these two different 
kernels →

If they were totally unrelated, there 
would be no need to run the first and 
wait for its completion: let's use 
Streams then.

@cp.fuse()
def elementwise_computation(x, y, z):

return cp.sin(x) + cp.cos(y) / cp.sqrt(z)

@cp.fuse(kernel_name='squared_diff')
def squared_diff(x, y):

return (x - y) * (x - y)



Concurrently executes two kernels

Using the with statement we implicitly 
execute the CUDA operations in the 
code block using that stream. The 
result of doing this is that the second 
kernel, i.e. squared_diff, does not 
need to wait for 
elementwise_computation to 
finish before being executed.

with cp.cuda.Stream() as stream1:

elementwise_computation(...)

with cp.cuda.Stream() as stream2:

squared_diff(...)



Concurrently executes two kernels

What if we instead have to wait for 
stream1 to finish? We have the 
synchronize() primitive to help.

This way though, we have to wait for 
the whole operations in stream1 to 
finish. What if we just want to wait for 
a particular event to happen and then 
go on? Yes, Events! You already 
faced them in the Best Practices 
section, they are used in the 
benchmark code.

stream1.synchronize()

stream1 = cupy.cuda.Stream()
stream2 = cupy.cuda.Stream()
sync_point = cupy.cuda.Event()

with stream1:
elementwise_comp(...)
sync_point.record(stream=stream1)
elementwise_comp(...)

with stream2:
stream2.wait_event(sync_point)
squared_diff(...)
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