### Calorimeter Geometric Factor

Calo meeting 28/04/2023

Pietro Betti

## **Detector Geometry**

HerdSoftware

Calorimeter version: spherical

Calorimeter filler: carbon fiber (2.000 g/cm<sup>3</sup>)

LYSO crystals with PhotoDiode Packages

Empty space in the envelope is filled with carbon fiber



# HerdSoftware Algorithms

#### Base of analysis:

- -CaloTrackInfoAlgo: estimate various types of track (in LYSO, in CALO envelope,...)
- -CaloAcceptanceCut: select only events on the base of track length and distance of the track from the CALO envelope
- -PolarAngleCut: select only events inside a certain polar angle: simulate earth shadow

# CaloAcceptanceCut Algorithm

#### Different track types:

- TrackLengthCaloCm: track in CALO envelope in cm
- TrackLengthCaloX0: approximated track in CALO envelope in X0 (used a mean radiation length of the calo to transform cm in X0)
- TrackLengthLYSOX0: approximated track length in LYSO (calculated from the track length in CALO envelope)
- ExactTrackLengthCaloX0: exact track length in CALo envelope in X0 (calculated considering the intersections of the track with every crystal)
- ExactTrackLengthLYSOX0: exact track length in LYSO in X0 (calculated considering the intersections of the track with every crystal)

# CaloAcceptanceCut Algorithm

#### Different track types:

- TrackLengthCaloCm: no info on how much active volume (LYSO) is traverdsed by the track
- TrackLengthCaloX0: no info on how much active volume (LYSO) is traverdsed by the track and approximation of using a mean radiation length of the calo
- TrackLengthLYSOX0: approximated
- ExactTrackLengthCaloX0: exact track length in CALO envelope in X0
- ExactTrackLengthLYSOX0: exact track length in LYSO in X0

# CaloAcceptanceCut Algorithm

Another cut on the trackMaxDistanceFromEnvelope variable:

- -5 point at a distance of 1/6 of track length in cm are selected
- -their distance from the envelope is estimated
- -the biggest of these distances is compared with trackMaxDistanceFromEnvelope:

if > → event is accepted

if < → event is rejected



### **Simulations**

Very High statistics of geantini simulated: 10^6 (but a lot more are not simulated but taken into account thanks to checkAcceptance in simulation datacard)

Generation surface: spherical

### Geometric Factor Calculation

$$GF_{calorimeter} = GF_{generation\_surface} * N_{selected} / N_{tot}$$

# Geometric Factor - ExactTrackLengthLYSOX0





### Geometric Factor

Selections: 30 X0 1 RM 112 deg

| Track Type             | Geometric Factor [m^2 sr] |                                                                                                                                                                              |
|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ExactTrackLengthLYSOX0 | 2.44                      |                                                                                                                                                                              |
| ExactTrackLengthCaloX0 | 2.70                      | The mean radiation lightens LYSO and loads carbon fiber  Track length in X0 are very similar to ExactTrackLength in X0 only for random directions, not for preferential ones |
| TrackLengthLYSOX0      | 2.21                      |                                                                                                                                                                              |
| TrackLengthCaloX0      | 2.54                      |                                                                                                                                                                              |

# Energy resolution for electrons

# Hypotesis

- About 3\*10^5 electrons simulated in energy range 100 GeV 20 TeV with spectrum E<sup>-1</sup>
- Only Monte Carlo truth is used
- Analysis for energy bin (bin equal log x: every energy bin has the same simulated statistics)

### Confidence level method

- Perform a selection on the events based on total exact track length in LYSO
- Build histogram of (energy measured / primary energy)
  - Energy measured = sum of energy releases in every crystal
- Find the peak of the histogram with a Logarithmic Gaussian fit
- Integrate bin right and left to reach 68% of total events in the histogram



Histogram built with a selection of minimum exact track length in LYSO of 30 X0

# **Energy resolution**

EnergyResolution\_vs\_X0



To be updated using a much bigger statistics

Bad fit, just a matter of small statistics used up to now in this study

# Spherical vs Prysmatic Calo

#### Spherical CALO

0.09

0.08

0.06

0.05

0.04

0.02

10

15

20

25



#### **Prysmatic CALO**



- Similar performance for strong X0 track length cuts

35

- Much better performance for spherical CALO for low X0 track length cuts

# **Energy lost**



We observed in all the energy range studied (100 GeV – 20 TeV) that the energy released in the crystals is peaked at 85% of the primary energy. Where is the energy lost?

# **Energy lost**

Simulated 10<sup>4</sup> electrons @ 100 GeV Two different geometries:

- -CALo filler is carbon fiber (that of the previous slides)
- -CALO filler is G4\_Galactic (very near to vacuum)



If the empty spaces between crystals are filled with G4\_Galactic, more than 99% of the primary energy is released in the crystals  $\rightarrow$  a lot of energy is lost in the carbon fiber