

- Giuseppe Carratta
- carratta@bo.infn.it
- On behalf of the **ATLAS Bologna Exotics Group**
- Joint Theoretical and Experimental Meeting **Seesaw at colliders**
- Alma Mater Studiorum University of Bologna, 11 May 2023

Alma Mater Studiorum UNIVERSITÀ DI BOLOGNA

Seesaw mechanisms searches at colliders - ATLAS

Introduction

Particle accelerators are fundamental tools to test physics models: Large Hadron Collider (LHC)

LHC is the biggest ever particle accelerator:

- Reached a **center-of-mass energy** of $\sqrt{s} = 13$ TeV (Run 2, 8 TeV Run 1)
- Delivered an **integrated luminosity** up to 156 fb⁻¹ in Run 2

LHC hosts four big experiments: ALICE, LHCb, CMS, **ATLAS**.

Centre-of-mass energy and integrated luminosity increased during Run 3:

- $\sqrt{s} = 13.6 \text{ TeV}$
- Over 300 fb^{-1} before the end of 2023

Giuseppe Carratta

ATLAS (A Toroidal LHC ApparatuS)

is a multipurpose experiment to discover signatures of new physics and to perform precise measurements of Standard Model.

ATLAS recorded 139 fb^{-1} good for physics analyses in Run 2.

Analysis strategy

Irreducible background: (SM processes) Cut and count analysis

Giuseppe Carratta

Reducible background: (Fake leptons, charge flip) **Data-driven technique**

11 May 2023

Background estimation

Statistical fit

Fitting strategy

Signal extraction technique based on a binned maximum-**likelihood fit**

Validation regions

Validate the background estimation performed in the CRs

$$N_p(SR, est.) = N$$

2

Obs.

Leptons resolution in ATLAS

leptons (less abundant SM background)

Giuseppe Carratta

Type-III

Type-III SeeSaw Search - Introduction

- **Type-III SeeSaw introduces** an extra fermionic triplet (L^{\pm}, N^0) . Heavy Leptons (HL) are considered **degenerate in mass** following the **minimal type-III** seesaw.
- **HL** pair production through virtual W, Z or Higgs bosons and decay into them and SM leptons.

HL mass hypotheses in 400-1200 GeV range

- For N^0 masses larger than a few times the Hmass, the **decays into** different **SM bosons** are independent of the heavy-lepton mass
- Only light leptons are considered in the final states (electrons and muons).

- Considered two kinds of final states:
 - 3 leptons (0-1 jets or 2+ jets)
 - 4 leptons
- **Results combined** with the already published **2 leptons + 2 jets** final states

Type-III SeeSaw Search - Analysis Strategy

Three-lepton channel

Three kinds of final states looking at the HL decay modes:

- **ZL Region**: at least one of the HLs decay into a Z boson decaying leptonically
- **ZL Veto Region**: vetoing the HLs decay into a Z boson decaying leptonically
- **JNLow Region**: no more than 1 jet*

*LO signal MC samples reweighted at the NLO. #jets is very sensitive to NLO corrections. Asking for 0 jets can lead to an overestimation of the signal efficiency.

Four main backgrounds:

- **Diboson (WZ)** estimated in **ZL CR** and validated in **ZL DB-VR** and JNLow VR
- **RareTop** estimated in the **FourLepton CR** and validated in **ZL RT-VR**
- **Other** group of **minor backgrounds** as DY, $t\bar{t}$, single-top and triboson
- **Fakes estimated** with a **data-driven** technique and validated in Fake-VR

Giuseppe Carratta

Four-lepton channel

Two different phase spaces looking at the total charge of the final states:

- **QO**: total charge of the system is 0
- **Q2**: total charge of the system is ±2

Four main backgrounds:

- **Diboson (ZZ)** estimated in **GO CR** and validated in **GO DB-VR** and **G2 VR**
- **RareTop** estimated in **Q0 RT-CR** and validated in **GO RT-VR**
- Other group of minor backgrounds as DY, $t\bar{t}$, single-top and triboson
- **Fakes estimated** with a **data-driven** technique

Type-III SeeSaw Search - Results

Giuseppe Carratta

Binned maximum-likelihood fit:

- 2L split in flavours $ee/e\mu/\mu\mu$ and charge OS/SS (previous) analysis, combined here)
- 3L combined flavours $\ell\ell\ell$, transverse mass of threelepton system as discriminant
- 4L combined flavours $\ell \ell \ell \ell$, $H_T + E_T^{miss}$ as discriminant
- Combination 3L + 4L, 2L + 3L + 4L

Main backgrounds floating in the fit

- **Diboson-31 (WZ):** from ZL CR to TriLepton regions
- **Diboson-41 (ZZ):** from Q0 Diboson CR to FourLepton regions
- **RareTop:** from Q0 RareTop CR to Tri- and FourLepton regions

Normalization Factor	μ_{norm} - 3lep	μ_{norm} - 4lep
diboson-3l	0.85 ± 0.03	_
diboson-4l	-	1.08 ± 0.03
raretop	-	1.4 ± 0.2

From 3L + 4L combination fit

Type-III SeeSaw Search - Results

Giuseppe Carratta

Binned maximum-likelihood fit:

- 2L split in flavours $ee/e\mu/\mu\mu$ and charge OS/SS (previous) analysis, combined here)
- 3L combined flavours $\ell\ell\ell$, transverse mass of threelepton system as discriminant
- 4L combined flavours $\ell \ell \ell \ell$, $H_T + E_T^{miss}$ as discriminant
- Combination 3L + 4L, 2L + 3L + 4L

Main backgrounds floating in the fit

- **Diboson-21 (WW):** from Diboson CR
- $t\bar{t}$: from Top CR

MC process	scaling factor
t ī dibasan	0.96 ± 0.02
aiboson	1.05 ± 0.14

From 2L only fit

Type-III SeeSaw Search - Discrepancy on 4L

Very low statistics in the last two bins of the **4L Q0 SR**.

Giuseppe Carratta

Some discrepancies observed in the four-

lepton final states.

Clear discrepancy in the **second bin** of the **4L Q2 SR**.

Excess deeply studied: underestimation of the electron charge-flip contribution (coming from a semi-data driven technique).

Type-III SeeSaw Search - Results

400

cross-section [fb] Total

ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{1}$ 10² Limits at 95% CL 10

500

DiLepton fit:

2 lepton final state

- Expected limit: 820_{-60}^{+40} GeV
- **Observed limit:** 790 GeV

600

Giuseppe Carratta

Combined fit:

3 + 4 lepton final states • **Expected limit:** 900_{-80}^{+80} GeV

• **Observed limit:** 870 GeV

Full fit:

2 + 3 + 4 lepton final states

- **Expected limit:** 960_{-90}^{+90} GeV
- Observed limit: 910 GeV

Giuseppe Carratta

Type-II

Type-II SeeSaw Search - Introduction

- Left-Right Symmetric Model within Type-II Seesaw mechanism: two chiralities $H_L^{\pm\pm}$ and $H_R^{\pm\pm}$
- Searching for $H^{\pm\pm}$ pair production in all lepton flavour and charge combinations: $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$, where $\ell = e, \mu, \tau$
- Lepton-Flavour Violation is allowed.
- $v_{\Lambda} \rightarrow 0$ GeV to exclude decays to W bosons.
- Search for $m_{H^{\pm\pm}}$ in a range 300-1300 GeV focusing on two-lepton, three-lepton and four-lepton final states
- Only light leptons (electrons and muons) are considered in this analysis (also the ones from τ leptonic decays).

Type-II SeeSaw Search - Analysis Strategy

Main backgrounds: fakes, diboson, Drell-Yan, other (rare-top, single-top, ttbar, multi boson)

Background estimation:

- prompt SM backgrounds (diboson, DY, ...) estimated from MC simulation
- events containing at least one fake lepton are estimated using data-driven matrix method
- electron charge flip weight from semi data-driven technique

Giuseppe Carratta

- Lepton multiplicity and invariant mass of SS leading lepton pair $(m(\ell^{\pm}\ell^{\pm})_{\text{lead}})$ ensure analysis regions orthogonality.
- Analysis regions are defined on the basis of the event lepton **multiplicity** and **flavour combinations** - optimised cuts for each channel
- Cuts on p_T and ΔR of $\ell^{\pm} \ell_{\text{lead}}^{\pm}$ reflect boosted topology
 - Additional E_T^{miss} and $\eta(\ell \ell)$ in *ee* channel to remove Drell-Yan. ,300 Get • Final discriminant:
 - $m\left(\ell^{\pm}\ell^{\pm}\right)_{\text{lead}}$ for two- and three- lepton channels
 - \overline{M} for four-lepton channel.

 $\bar{M} = \frac{m\left(\ell^+\ell^+\right) + m\left(\ell^-\ell^-\right)}{2}$

Type-II SeeSaw Search - Results

Giuseppe Carratta

Binned maximum-likelihood fit:

- 2L split in flavours $ee/e\mu/\mu\mu$, variable binning in CRs and SRs
- 3L combined flavours $\ell\ell\ell$, variable binning in CRs and SRs
- 4L combined flavours $\ell\ell\ell\ell$, single bin M = event yield
- Combination of 2L + 3L + 4L

Main backgrounds are floating in the fit to extrapolate normalisation factors:

- Drell-Yan and diboson-21 (WW) in normalisation factors two-lepton regions
- Diboson-31 (WZ) in three-lepton regions
- Diboson-41 (ZZ) in four-lepton regions

11011116	
μ^{DY}	1.13 ± 0.0
μ^{DB}_{2l}	1.10 ± 0.0
μ^{DB}_{3l}	0.92 ± 0.0
μ^{DB}_{4l}	1.08 ± 0.1

From combination fit

Type-II SeeSaw Search - Results

DCH HEPData

Giuseppe Carratta

Channel	Expected limit [GeV]	Observed limit [Ge
21	540_{-60}^{+40}	520
31	920_{-50}^{+70}	930
41	990^{+70}_{-80}	1030

Global limits:

- Combination (21+31+41):
 - Observed 1080 GeV
 - Expected 1065⁺³⁰₋₅₀ GeV
- Right-handed $H^{\pm\pm}$:
 - Observed: 900 GeV
 - Expected 880⁺³⁰₋₄₀ GeV

Provided also an interpretation of the Zee-Babu model, with the same limits of the right-handed component.

Type-II SeeSaw Search - New Scenario

which we may study:

- Increase the vet v_{Δ} to higher values (around 10^{-4} GeV) so that $H^{\pm\pm} \to \ell^{\pm} \ell^{\pm} / W^{\pm} W^{\pm}$ are possible
- **Cascades model**: Up to now, we consider only the case where $m_{\Delta^{\pm}} = m_{\Delta^{\pm\pm}}$, while if we account also the case where Δ^0 decays consecutively to $\Delta^{\pm}W^{\mp}$ and Δ^{\pm} further down to $\Delta^{\pm\pm}W^{\mp}$

Since the mass splitting is not expected to be very large:

- Δ^0 predominantly decays into a pair of ν , at large enough energies also to a pair of Hs or Zs
- $\Delta^{\pm\pm}$ decays into a $\ell^{\pm}\ell^{\pm}$ or $W^{\pm}W^{\pm}$, which depend on ν_{Λ} value. This means that we are eventually looking for the same final state as the previous analysis (and a couple of low energy jets/ lepton from W emission).

Giuseppe Carratta

Our colleagues from Ljubljana proposed two different scenarios within the canonical (not LRSM) type-II seesaw model

 $\Delta M = m_{\Delta^{\pm}} - m_{\Delta^{\pm\pm}}$, a whole new spectra of possible decay channels occurs. This scenario can be called the "**Cascades**", since

Type-II SeeSaw Search - 331 Model

Possible reinterpretation of the analysis in terms of vector bosons from the Dilepton Model (331)

The **331 Model introduces** three types of **new particles beyond the SM**: gauge bosons, exotic quarks and additional scalars

Strong interaction

5 extra gauge bosons (including Z') and four bileptons

New bosons (Dileptons) with $L = \pm 2$

Weak SM

Doubly charged vector dileptons (Y) along with doubly charged scalars (H): **interesting** because **their decay leads to a signature rarely produced by SM** processes (**same charge same flavour lepton pairs**)

Gauge anomalies cancellations achieved among the fermion families \rightarrow Number of fermion generations = 3 • More in <u>arXiv:1806.04536</u>

Giuseppe Carratta

Electroweak sector extended LFV not allowed in 331 model

Conclusions and Next Steps - Points of discussions

- Several **SeeSaw searches performed in ATLAS**, using a cut-and-count approach
 - Very challenging final states, they need Machine Learning techniques to improve SRs definition
- Fake non-prompt leptons have high contribution in these topologies, which is **difficult to estimate**. **ML** methods (unsupervised) can be used to increase the goodness of the fake estimation
- **Theory systematics** have important **impact** on our **SRs**. Is there a clever way to minimize it?
- **Hadronic decays** of τ -leptons are very challenging, but we want to include them in the next iteration. Are τ -leptons more sensible to BSM scenarios?
- **Reinterpretation in terms of LLP** could lead to **new** interesting **phase spaces**. Are they theoretically well motivated or not forbidden?

Giuseppe Carratta

For the **diboson** processes, we are **not using** the highest-order computations for QCD and EW

\Rightarrow Impact on the background estimation

Figure 9. Distribution in the transverse momentum of the hardest charged lepton for the processes (3.1)-(3.3) at 13 TeV. Baseline cuts are applied without jet veto. Plot format and predictions as in figure 6.

From JHEP02 (2020) 087

Leptons resolution in ATLAS

Electron Charge-flip probability as function of η and p_T

BR dependence on H^{±±}

Giuseppe Carratta

 $m_{\Delta^{\pm\pm}} = 1000 \ GeV$

18 marzo 2022

Cascades Feynman diagrams for $\Delta M > 0$

Giuseppe Carratta

18 marzo 2022

Cascades cross-sections for $\Delta M > 0$

- Theorists suggested:
 - Use $\Delta M \simeq 50$ GeV.
 - Search in the range [200, 1200] GeV.

Giuseppe Carratta

18 marzo 2022

Type-I SeeSaw Search - Introduction

- Left-Right Symmetric Model introduces right-handed counterparts to the W and Z bosons and also **right-handed neutrinos**. Neutrino masses via **Type-I Seesaw**
- Considering both normal ($m_{WR} > m_{NR}$) and reversed ($m_{WR} < m_{NR}$) hierarchy.
- Looking for two **same flavor leptons** and **two quarks**.
- W_R reconstructed with $\ell \ell q q$ (normal hierarchy) or q q (reversed hierarchy).
- N_R is **Majorana** particle, **signals** are generated with **50% Opposite** Sign (OS) and 50% Same Sign (SS) lepton pairs.
- Interpretations of Dirac type neutrino can be done by picking up **OS** pairs.

Giuseppe Carratta

3 fermions

3 gauge bosons

LRSM Particles (Excluding Higgs sector)

Feynman diagram for the Keung-Senjanović process $(m_{WR} > m_{NR})$.

Type-I SeeSaw Search - Introduction

- Left-Right Symmetric Model introduces right-handed counterparts to the W and Z bosons and also **right-handed neutrinos**. Neutrino masses via **Type-I Seesaw**
- Considering both normal ($m_{WR} > m_{NR}$) and reversed ($m_{WR} < m_{NR}$) hierarchy.
- Looking for two **same flavor leptons** and **two quark**
- W_R reconstructed with $\ell \ell q q$ (normal hierarchy) or hierarchy).
- N_R is **Majorana** particle, **signals** are generated with Sign (OS) and 50% Same Sign (SS) lepton pairs.
- Interpretations of Dirac type neutrino can be done by picking up **OS** pairs.

Giuseppe Carratta

LRSM Particles

Type-I SeeSaw Search - Analysis Strategy

Depending on the mass balance of m_{WR} and m_{NR} , there are 3 object level final states:

• **Resolved** (1):

- $\Delta M = m_{WR}$ - m_{NR} < 4 TeV, required 2 or more different small-R jets

• **Boosted** (2 & 3):

- $\Delta M = m_{WR}$ - m_{NR} > 4 TeV, required 1 large-R jets from all or a part of N_R decay products.

Giuseppe Carratta

- Since resolved and boosted **channels are not** combined statistically, object selections are optimized separately.
- Exclusion curves are overlayed
- Each channel has **unique object selections** for fake estimation.

Leptons classifications:

- Resolved
 - **Baseline** (analysis) and **Loose** (fake estimation)
- Boosted
 - **Baseline** (analysis), **Leading** (analysis, more string requirements) and **Loose** (fake estimation)

Type-I SeeSaw Search - Resolved

- 4 sub-channels, 2 for electron and 2 for muon final state
- **OS** (1 & 2):
 - **Z+jets & ttbar** (Tops) are the **dominant backgrounds**.
 - Dirac type neutrino interpretations are performed with this channel.
- **SS** (3 & 4):
 - Di-boson (VV) is the dominant background.
 - Smaller background events than OS.

*Data-driven correction to the MC shape applied for an observed mismodelling in Sherpa Drell-Yan samples.

- For SS, $\Delta R(\ell \ell) < 3.9$ to reduce some mismodellings derived from di-boson samples.
- Final discriminant: for OS, m_{WR} , for SS, H_T (scalar sum of the p_T of leptons and small-R jets)

Type-I SeeSaw Search - DD Correction

Sherpa 2.2.11 does not correctly model the m(jj) spectrum although most other observables are well-described. Observed in both di-electrons and di-muon channels.

Correction strategy:

statistics

2. Subtract from data all other background contributions **except Z+jets**.

Novosibirsk function with three parameters: **peak**, width, tail

calculated to match MC and data event numbers in the Z+jets Control Region

Giuseppe Carratta

1. Histogram rebinned to have enough

3. Normalise both data and Z+jets histograms **4.** Take the ratio of Data/MC and normalize it

5. Perform a χ^2 fit of the ratio to the

6. An **additional normalisation factor** is

$$k_{1} = \log \left[1.0 - \frac{(x - peak) \cdot width}{width} \right]$$

$$k_{2} = 2\sqrt{\log 4}$$

$$k_{3} = \frac{2.0}{k_{2}} \sinh^{-1}(0.5 k_{2} \cdot tail)$$

$$y = \exp \left[-\frac{0.5}{k_{3}^{2}} k_{1}^{2} - 0.5 k_{3}^{2} \right]$$

Novosibirsk function

Parameter	best fit value
peak	247.188 ± 14
width	5043 ± 33
tail	-36.6 ± 4.1

Type-I SeeSaw Search - DD Correction

Sherpa 2.2.11 does not correctly model the m(jj) spectrum although most other observables are well-described. Observed in both di-electrons and di-muon channels.

Internal result

Correction strategy:

- statistics
- contributions except Z+jets.

- peak, width, tail

Without correction

Giuseppe Carratta

1. Histogram rebinned to have enough

2. Subtract from data all other background

3. Normalise both data and Z+jets histograms **4.** Take the ratio of Data/MC and normalize it

5. Perform a χ^2 fit of the ratio to the

Novosibirsk function with three parameters:

6. An **additional normalisation factor** is

calculated to match MC and data event numbers in the Z+jets Control Region

Internal result

With correction

Type-I SeeSaw Search - Boosted

- 3 sub-channels, 2 for electron and 1 for muon final state
- One Electron (1)
 - Main target: $m_{WR} > 10 m_{NR}$
 - W+jets, Di-jet and γ +jets with a fakes are the domin
- **Two Electrons** (2, orthogonal with 1)
 - Main target: $m_{WR} < 10 m_{NR}$
 - Z + jets is dominant
- **Two Muons** (3):
 - Cover a wide range of m_{WR} and m_{NR} plane
 - Z + jets is dominant

Giuseppe Carratta

nant	
------	--

Region	bSR1e	bSR2e	bS
Number of large-R jets		1	
Number of electrons	1	2	
Number of muons	0	0	
Leading lepton $p_{\rm T}$ [GeV]		> 200	
$E_{\rm T}^{\rm miss}$ [GeV]	< 2	200	
$\cos \theta$	> 0.7	-	
$\Delta \eta_{J,\ell_1}$	< 2.0	-	
Dilepton $p_{\rm T}$ (GeV)	-		>
Dilepton mass $m_{\ell\ell}$ [GeV]	-	>	200
Number of <i>b</i> -tagged small- <i>R</i> jets		0	

For each SR is imposed that $m_{WR} > 3$ TeV.

- Fits for electron and muon final state are performed separately
- Every dominant backgrounds are estimated with semi-data-driven method:
 - For one electron channel, 4 different CRs are used for 3 backgrounds (W+jets/ γ +jets/Multi jet) estimations.
 - For two lepton channels, only 1 CR for Z+jets.

Type-I SeeSaw Search - Results

< Majorana type Neutrino >

- in both electron and muon channels
- Most stringent limit for $m_{WR} > m_{NR}$.

< Dirac type Neutrino >

- in both electron and muon channels
- Most stringent limit for $m_{WR} > m_{NR}$.

Giuseppe Carratta

• Excluded region up to $m_{WR} = 6.4$ TeV and $m_{NR} = 1$ TeV

Resolved

Boosted

or	Value	Floating background	Normalization
WW	$\begin{array}{ c c c c c } \hline 1.0 \pm 0.1 \\ 1 \pm 0.15 \\ 0.9 \pm 0.3 \\ \hline \end{array}$	W+jets QCD multi-jet γ +jets	1.0487 ± 0 0.5578 ± 0 0.3832 ± 0
3)		Z+jets	1.2285 ± 0

• Excluded region up to $m_{WR} = 6.4$ TeV and $m_{NR} = 1$ TeV

Type-I SeeSaw Search - Resolved

Definitions of SRs

Variable	rSRSS2e	rSRSS2mu	rSROS2e	rSROS2mu
Number of electrons	2	0	2	0
Number of muons	0	2	0 2	
Lepton charge	sam	e sign	opposite sign	
Leading lepton $p_{\rm T}$ [GeV]	> 40			
Dilepton mass $m_{\ell\ell}$ [GeV]	> 400			
$\Delta R_{\ell\ell}$	< 3.9 –			_
Number of small- <i>R</i> jets with $p_{\rm T} > 100 \text{ GeV}$	≥ 2			
Number of <i>b</i> -tagged jets	0			
Dijet mass m_{jj} [GeV]	> 110			
$h_{\rm T} \equiv p_{\rm T}(\ell_1) + p_{\rm T}(\ell_2) + p_{\rm T}(j_1) + p_{\rm T}(j_2)$ [GeV]	> 400			

SeeSaw mechanismes

• Type-I: one scalar singlet (N_R)

 $\mathcal{L} = i\bar{N}_R \partial N_R - y_N \ell_L \psi^* N_R - \frac{M}{2} \bar{N}_R^c N_R + h.c.$

• Type-II: one scalar triplet $(\vec{\Delta})$ $\mathcal{L} = \left(D_{\mu} \vec{\Delta} \right)^{\dagger} \left(D^{\mu} \vec{\Delta} \right) + \left[\bar{\widetilde{\psi}}_{L} y_{\Delta} \Delta \psi_{L} + \widetilde{\phi}^{\dagger} \mu_{\Delta} \right]$ • Type-III: one fermionic triplet $(\tilde{\Sigma})$

$$\mathcal{L} = i \bar{\vec{\Sigma}}_R \not{D} \vec{\Sigma}_R - \frac{1}{2} \bar{\vec{\Sigma}}_R M \vec{\Sigma}_R^c - \bar{\vec{\Sigma}}_R y_{\Sigma} \left(\tilde{\phi}^{\dagger} \vec{\sigma} \psi_L \right) + h.c. \xrightarrow{\mathsf{SSB}} \begin{array}{c} m_1 = v y_\ell = m_\ell^D \\ m_2 = -v^2 y_{\Sigma}^T |M|^{-1} y_{\Sigma} \end{array}$$

Giuseppe Carratta

mSSB

$$m_1 \simeq \frac{m_D^2}{M} = \frac{v^2}{2} y_\nu \frac{1}{M} y_\nu^T$$
$$m_2 \simeq M$$

$$\Delta^{\dagger}\phi + h.c.] - V\left(\vec{\Delta}\right) \xrightarrow{\text{SSB}} m_{\nu} = y_{\Delta}v^{2}\frac{\mu_{\Delta}}{M_{\Delta}^{2}}$$

Type-II and Type-III SeeSaw

Figure 3. scalars produced in pairs produced in $\sqrt{s} = 14$ and 100 TeV pp collisions, and which subsequently decay to multi-lepton final states. Adapted from Ref. [26]. (b) The same but for Type III leptons produced in pairs in $\sqrt{s} = 14$ and 27 TeV pp collisions. Adapted from Ref. [29].

Giuseppe Carratta

(a) The luminosity required to reach 5σ (3σ) discovery (sensitivity) of Type II Seesaw

Type-II and Type-III SeeSaw

Physics process	Event generator		PDF set	Cross-section normalisation	Parton shower	Parton shower tune
Signal $H^{\pm\pm}$	Рутніа 8.212 [<mark>38</mark>]	N	NPDF2.3lo [41]	NLO	Рутніа 8.230 [<mark>54</mark>]	A14 [<mark>40</mark>]
Process	Generator	Cross-	Parton		PDF	Tune
		section	shower		set	
Type-III seesaw						
$L^{+}L^{-}, L^{\pm}N^{0}$	MadGraph5_aMC@NLO [29]	NLO+NLL	Рутніа 8.230 [<mark>32</mark>]	NNPDF3.0L	o [31] NNPDF2.3lo [34]	A14 [33]
Top quark						
$t\bar{t}$	Роwнед Box v2 [40–43]	NNLO	Рутніа 8.230	NNPDF3.0nni	LO [31] NNPDF3.0NLO [3]] A14
Single t	Powheg Box v2	NNLO	Рутніа 8.230	NNPDF3.	0nnlo NNPDF3.0nlo	A14
Rare top quark						
3t, 4t	MadGraph5_aMC@NLO	LO	Рутніа 8.230	1	NNPDF3.0lo	A14
$t\bar{t} + W/Z/H, tWZ$	MadGraph5_aMC@NLO	NNLO	Рутніа 8.230	N	INPDF3.0nlo	A14
Diboson						
ZZ, WZ	Sherpa 2.2.1 [44] & 2.2.2	NLO	Sherpa	N	NPDF3.0nnlo	Sherpa default
Triboson WWW, WWZ, WZZ, ZZZ	Sherpa 2.2.1 & 2.2.2	NNLO	Sherpa	N	NPDF3.0nnlo	Sherpa default
Drell–Yan $Z/\gamma^* \rightarrow e^+ e^-/\mu^+ \mu^-/\tau^+ \tau^-$	Sherpa 2.2.1	NLO	Sherpa	N	NPDF3.0nnlo	Sherpa default

Objects definition

Requirement	Signal jets	Baseline jets	Requirement	Signal electrons (tight)	Background electrons (le
Jet type JVT working point	AntiKt4EMPFlowJets Medium	AntiKt4EMPFlowJets Medium	Identification	LHTight	LHLoose XOR
fJVT working point $p_{\rm T}$ cut η cut b -tagging	$p_{ m T}>20{ m GeV}\ \eta <2.5$ MV2c10 with <code>FixedCutBEff_77</code>	$p_{ m T}>20{ m GeV}$ $ \eta <4.5$	Isolation $p_{\rm T}$ cut η cut	FCLoose $p_{\rm T} > 10 {\rm GeV}$ $ \eta < 2.47$ and veto $1.37 < \eta < 1.52$	fail FCLoose or fail tight so $p_{\rm T} > 10 {\rm GeV}$ $ \eta < 2.47$ and veto $1.37 < z $
			$ d_0 /\sigma_{d_0}$ cut $ z_0 \sin(\theta) $ cut Bad cluster veto	$ d_0 /\sigma_{d_0} < 5.0$ $ z_0 \sin(\theta) < 0.5 \mathrm{mm}$ ves	$ d_0 /\sigma_{d_0} < 5.0$ $ z_0 \sin(\theta) < 0.5 \mathrm{mm}$ ves
ЛЕТ				j • • •	
Requ	uirement	Nominal	Requirement	Signal muons (tight)	Background muons (loos
ӯре	TI	rack-based Soft Term	Quality	HighPt if $p_{\rm T} > 300 {\rm GeV}$ else Medium	HighPt if $p_{\rm T} > 300 \text{GeV}$ else
Vorking point		Tight	Bad muon veto	yes	yes
orward jets		yes	Isolation $p_{\rm T}$ cut	FixedCutTightTrackOnly $p_{\rm T} > 10{ m GeV}$	fail FixedCutTightTrack $p_{\rm T} > 10{ m GeV}$
Pile-up jets in sig	nificance calculation	no	η cut	$ \eta < 2.5$	$ \eta < 2.5$
			$ d_0 /\sigma_{d_0}$ cut $ z_0 \sin(\theta) $ cut	$ d_0 /\sigma_{d_0} < 3.0$ $ z_0 \sin(\theta) < 0.5 \mathrm{mm}$	$ d_0 /\sigma_{d_0} < 3.0$ $ z_0 \sin(\theta) < 0.5 \mathrm{mm}$

Requirement	Signal jets	Baseline jets	Requirement	Signal electrons (tight)	Background electrons
Jet type JVT working point	AntiKt4EMPFlowJets Medium	AntiKt4EMPFlowJets Medium	Identification	LHTight	LHLoose XOR
fJVT working point $p_{ m T}$ cut	$p_{\rm T} > 20 { m GeV}$	$p_{\rm T} > 20 { m GeV}$	Isolation	FCLoose	fail FCLoose or fail tight
η cut	$ \eta < 2.5$	$ \eta < 4.5$	$p_{\rm T}$ cut	$p_{\rm T} > 10 {\rm GeV}$	$p_{\rm T} > 10 {\rm GeV}$
<i>b</i> -tagging	MV2c10 with FixedCutBEff_7	7	η cut	$ \eta < 2.47$ and veto $1.37 < \eta < 1.52$	$ \eta < 2.47$ and veto 1.37 <
			$ d_0 /\sigma_{d_0}$ cut	$ d_0 /\sigma_{d_0} < 5.0$	$ d_0 /\sigma_{d_0} < 5.0$
			$ z_0 \sin(\theta) $ cut	$ z_0 \sin(\theta) < 0.5 \mathrm{mm}$	$ z_0\sin(\theta) < 0.5\mathrm{m}$
			Bad cluster veto	yes	yes
MET					
Req	uirement	Nominal	Requirement	Signal muons (tight)	Background muons (lo
Туре	-	Track-based Soft Term	Quality	HighPt if $p_{\rm T} > 300 {\rm GeV}$ else Medium	HighPt if $p_{\rm T} > 300 \text{GeV}$ els
Working point		Tight	Bad muon veto	yes	yes
Eorward iots			Isolation	FixedCutTightTrackOnly	fail FixedCutTightTra
roiwaru jets		yes	$p_{\rm T}$ cut	$p_{\rm T} > 10 {\rm GeV}$	$p_{\rm T} > 10 {\rm GeV}$
Pile-up jets in sig	nificance calculation	no	η cut	$ \eta < 2.5$	$ \eta < 2.5$
			$ d_0 /\sigma_{d_0}$ cut	$ d_0 /\sigma_{d_0} < 3.0$	$ d_0 /\sigma_{d_0} < 3.0$
			$ z_0 \sin(\theta) $ cut	$ z_0 \sin(\theta) < 0.5 \mathrm{mm}$	$ z_0 \sin(\theta) < 0.5 \mathrm{m}$

Keep	Remove	ΔR cone size or tracks
electron	muon	sharing an ID track (no MS track)
muon	electron	sharing an ID track
electron	jet	0.2
jet	electron	0.4
muon	jet	0.2 and (jet tracks \leq 2 or $p_{\mathrm{T}}\left(\mu ight)/p_{\mathrm{T}}\left(\mathrm{jet} ight)$ > 0.5)
jet	muon	0.4 and (jet tracks \geq 2 or $p_{\mathrm{T}}\left(\mu\right)/p_{\mathrm{T}}\left(\mathrm{jet}\right)$ < 0.5)

HL Searches State of Art

CMS analysis in 3 + 4 lepton final state **Observed: 880 GeV**

331 Model Exclusion Limits

expected: $m_{Y^{\pm\pm}} < 1642$ GeV are excluded at 95% CL.

observed: $m_{Y^{\pm\pm}} < 1637 \text{ GeV}$ are excluded at 95% CL.

Giuseppe Carratta

 $H^{\pm\pm}$ from 331 Model

Results from Silvia De Luca' thesis

Signal Significance

$$\mathcal{S} = \sqrt{2} \left[(S+B) \ln \left(1 + \frac{S}{B} \right) \right]$$

- $S \rightarrow$ Number of signal events
- $B \rightarrow$ Number of background events

Signal Efficiencies

Type-III SeeSaw Systematics

Category	Туре	Nuisance Parameters
Luminosity Pile-up reweighting		1 1
Theory	SHERPA 2.2.1 PDF variation	1
uncertainties	SHERPA 2.2.1 QCD scale variation	1
	SHERPA 2.2.1 PDF choice	1
	Diboson Njet Modelling	1
	Rare Top ttW/ttZ	1
	MADGRAPH5_aMC@NLO PDF variation	1
	MadGraph5_aMC@NLO QCD scale vari- ation	1
Data-driven	Electron fake factors	1
background	Muon fake factors	1
Electron	Resolution	1
calibration	Momentum scale	2
	ID	1
Electron	Reconstruction	1
effection	Isolation	1
eniciencies	Trigger	2
	Charge identification	2
Muon	Smearing of the ID and MS track	2
calibration	Momentum scale	3
	Reconstruction	3
Muon	Isolation	2
efficiencies	TTVA	2
	Trigger	2
	Jet energy scale calibration	14
	Jet energy scale flavour dependence	3
let calibration	Jet energy scale pile-up dependence	4
jet cambration	Jet energy scale calorimeter punch-	2
	through	0
	Jet energy scale MC non-closure	2
	Jet energy resolution	9
Jet	JVT	1
efficiencies	Flavour tagging	6
$E_{\mathrm{T}}^{\mathrm{miss}}$ soft	Offset along the <i>ptHard</i> axis	1
track	Smearing by resolution uncertainty along	2
	and perpendicular to <i>ptHard</i> axis	

Exclusion limits

TriLepton fit:

- **Expected limit:** 885⁺⁸⁵₋₉₀ GeV
- Observed limit: 860 GeV

Giuseppe Carratta

FourLepton fit:

- **Expected limit:** 690_{-80}^{+70} GeV
- Observed limit: 580 GeV

Background Composition

ZLRegion CR

Zjets = 0.023267 <0.1 % raretop = 294.308 = **13**% diboson = 1740.02 = **78**% singletop = 0.10781 <0.1 % ttbar = 0.909846 <0.1 % fakes = 181.122 = 8%

Total = 2218.64

JNLow VR

```
Zjets = 0.524453 <0.1 %
                             raretop = 45.2821 = 1.1%
                             diboson = 3258.39 = 79%
                             singletop = 0.337144 <0.1 %
                             ttbar = 2.62692 <0.1 %
multiboson = 2.14734 <0.1 % multiboson = 3.56526 <0.1 %
                             fakes = 776.853 = 19%
```

Total = 4087

41 Diboson CR **ZLRegion VR 41 VR** 41 RareTop CR Zjets = 0 = 0 % Zjets = 0 = 0 % Zjets = 0 = 0 % raretop = 7.17921 = 0.4% raretop = 43.5846 = **86**% raretop = 0.591902 = 2.7%

diboson = 5.39206 = **10**%

ttbar = 0.109355 = 0.2%

fakes = 1.5833 = 3.2%

Total = 50

singletop = 0 = 0 %

diboson = 1469.06 = **96**%

ttbar = 0.067574 <0.1 %

fakes = 50.7543 = 3.3%

singletop = 0 = 0 %

Total = 1527

```
Zjets = 0 = 0 %
raretop = 17.4531 = 28%
diboson = 41.9871 = 69%
singletop = 0 = 0%
ttbar = 0.0310715 <0.1 %
multiboson = 0.139507 = 0.2%
fakes = 1.68393 = 2,7%
```

```
Total = 61
```

ZLRegion SR

JNLow SR

ZLVet

<pre>Zjets = 0 = 0% raretop = 1.93599 = 33% diboson = 3.49411 = 60% singletop = 0 = 0% ttbar = 0 = 0% multiboson = 0.115888 = 2% fakes = 0.334579 = 5,6%</pre>	<pre>Zjets = 0 = 0% raretop = 1.07499 = 3,5% diboson = 21.8564 = 78% singletop = 0 = 0% ttbar = 0 = 0% multiboson = 0.318653 = 0,1% fakes = 4.69722 = 16%</pre>	<pre>Zjets = 0.166773 = 0.6% raretop = 8.90412 = 32% diboson = 11.0096 = 43% singletop = 0 = 0% ttbar = 0.122741 < 0.1% multiboson = 0.192334 < 0.1% fakes = 6.55489 = 24%</pre>	<pre>Zjets = 0 = 0% raretop = 5.25761 = 35% diboson = 7.26507 = 47% singletop = 0 = 0% ttbar = 0 = 0% multiboson = 0.489794 = 3,2% fakes = 2.17128 = 14%</pre>	Zjets = 0 = 0% raretop = 0.76638 diboson = 5.8494 = singletop = 0 = 0% ttbar = 0 = 0% multiboson = 0.08 fakes = 3.95138 =
Total = 5.88057	Total = 27.9472	Total = 26.9504	Total = 15.1838	Total = 10.655

to	SR

SR tot.charge 0

SR tot charge 1

ttbar = 0 = 0 %

Total = 22

Missing Energy Transverse

It is characterised by two contributions:

- Hard objects: which include fully reconstructed and calibrated particles, i.e. electrons, photons, τ -leptons, muons and jets;
- Soft term: which consist of signals not associated with any of reconstructed hard objects.

$$\mathcal{S}\left(E_{\mathrm{T}}^{\mathrm{miss}}
ight)^{2} = rac{\left|\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}
ight|^{2}}{\sigma_{L}^{2}\left(1-
ho_{LT}^{2}
ight)},$$

Giuseppe Carratta

 σ_I^2 is total variance in the longitudinal direction to $\mathbf{E}_T^{\text{miss}}$ and ρ_{LT} is the correlation factor of the longitudinal L **and transverse** T measurements. This form shows the **intrinsic meaning of the** \mathcal{S} , where the measured variable is in the numerator and the information of the variance is embedded in the denominator

Type-III DiLepton - ML

No splitti	ng in sepa	irate
combinations		
Training fea	i <mark>tures</mark> (24)	
$p_{ m T}(\ell_{ m lead.}) \ p_{ m T}(j_{ m lead.}) \ m(\ell\ell)$	$p_{ m T}(\ell_{ m sub-lead.}) \ p_{ m T}(j_{ m sub-lead.}) \ m(jj)$	
$m_{\rm T}(\ell\ell)$ $m_{\rm minimax}$ $\Delta\phi(E_{\rm T}^{\rm miss},\ell)_{\rm min}$	$egin{aligned} m_{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}} \ H_{\mathrm{T}} + E_{\mathrm{T}}^{\mathrm{miss}} \ \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, jj) \end{aligned}$	$p_{\mathrm{T}}(\ell)$

Chosen based on the effect on the boosted decision tree.

Fitting OS/SS, $ee/\mu\mu/e\mu$ separately. MVA Score for SRs, $H_T + E_T^{miss}$ for CRs

Background	Normalisation scale
Diboson (OS ee)	0.81 ± 0.07
Diboson (OS <i>eµ</i>)	0.90 ± 0.06
Diboson (OS $\mu\mu$)	0.69 ± 0.06
Diboson (SS ee)	1.21 ± 0.12
Diboson (SS $e\mu$)	1.27 ± 0.06
Diboson (SS $\mu\mu$)	1.10 ± 0.08
tīt (ee)	0.89 ± 0.01
tīt (eμ)	0.90 ± 0.01
tīt (μμ)	0.91 ± 0.01

Giuseppe Carratta

From Tadej Novak' PhD thesis

e lepton **flavour** or **charge** during training.

Preselection:

Type-III TriLepton - ML

Tabella 4.3: Ranking delle variabili classificatrici in ordine decrescente di importanza, per ogni metodo di analisi multivariata implementato nel codice TMVA.

$S(E_T^{miss}) = m_{l1} \qquad \Delta R_{lepLS} \qquad m_{l0} \qquad m_{j0} \\ \Delta R_{jet} = m_{l0} \qquad m_{l0} \qquad m_{j0} \\ m_{j1} = H_T \qquad \Delta R_{jet} = E_T^{miss} \\ m_{j0} = E_T^{miss} = m_{l1} \qquad H_T \\ \Delta R_{lepS1} = m_{l2} \qquad \Delta R_{lepS3} \qquad m_{j1} \\ \Delta R_{lepLS} = S(E_T^{miss}) \qquad \Delta R_{lepS1} = m_{l1} \\ E_T^{miss} = m_{j0} \qquad H_T \qquad m_{l2} \\ \Delta R_{lepS3} = \Delta R_{lepS3} \qquad S(E_T^{miss}) \qquad S(E_T^{miss}) \\ H_T = \Delta R_{jet} \qquad m_{j0} \qquad A R_{lepS1} \\ m_{l1} = m_{j1} \qquad E_T^{miss} \qquad \Delta R_{lepS1} \\ m_{l2} = \Delta R_{lepS1} \qquad m_{l2} \qquad \Delta R_{lepS3} \\ m_{l0} = \Delta R_{lepS1} \qquad m_{l2} \qquad \Delta R_{lepS1} \\ m_{l1} = m_{j1} \qquad E_T^{miss} \qquad \Delta R_{lepS1} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepS3} \\ m_{l0} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l1} \qquad \Delta R_{jet} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} = \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS} \qquad M_{l2$	Likelihood	Fisher Linear Discriminant	Boosted Decision Trees	Multilayer Perceptron
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathcal{S}(E_T^{miss})$	m_{l1}	ΔR_{lepLS}	m_{l0}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΔR_{jet}	m_{l0}	m_{l0}	m_{j0}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{j1}	H_T	ΔR_{jet}	E_T^{miss}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{j0}	E_T^{miss}	m_{l1}	H_T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΔR_{lep3L}	m_{l2}	ΔR_{lepS3}	m_{j1}
$E_T^{miss} \qquad m_{j0} \qquad H_T \qquad m_{l2}$ $\Delta R_{lepS3} \qquad \Delta R_{lepS3} \qquad S(E_T^{miss}) \qquad S(E_T^{miss})$ $H_T \qquad \Delta R_{jet} \qquad m_{j0} \qquad \Delta R_{lep3L}$ $m_{l1} \qquad m_{j1} \qquad E_T^{miss} \qquad \Delta R_{lepS3}$ $m_{l2} \qquad \Delta R_{lepLS} \qquad m_{j1} \qquad \Delta R_{jet}$ $m_{l2} \qquad \Delta R_{lepLS} \qquad m_{j1} \qquad \Delta R_{jet}$	ΔR_{lepLS}	$\mathcal{S}(E_T^{miss})$	ΔR_{lep3L}	m_{l1}
$\Delta R_{lepS3} \qquad \Delta R_{lepS3} \qquad S(E_T^{miss}) \qquad S(E_T^{miss}) \\ H_T \qquad \Delta R_{jet} \qquad m_{j0} \qquad \Delta R_{lep3L} \\ m_{l1} \qquad m_{j1} \qquad E_T^{miss} \qquad \Delta R_{lepS3} \\ m_{l0} \qquad \Delta R_{lep3L} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} \qquad \Delta R_{lepLS} \qquad m_{j1} \qquad \Delta R_{jet} \\ \hline 0.95 \\ 0.95 \\ 0.95 \\ 0.85 \\ 0.85 \\ 0.75 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.8 \\ 0.85 \\ 0.8 \\ 0.85 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.9 \\ 0.9 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 $	$E_T^{m\bar{i}ss}$	m_{j0}	H_T	m_{l2}
$H_{T} \qquad \Delta R_{jet} \qquad m_{j0} \qquad \Delta R_{lep3L} \\ m_{l1} \qquad m_{j1} \qquad E_{T}^{miss} \qquad \Delta R_{lep3L} \\ m_{l2} \qquad \Delta R_{lep3L} \qquad m_{l2} \qquad \Delta R_{lepLS} \\ m_{l2} \qquad \Delta R_{lepLS} \qquad m_{j1} \qquad \Delta R_{jet} \\ \hline \\ 0.95 \\ 0.95 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.75 \\ 0.75 \\ 0.75 \\ 0.8 \\ 0.85 \\ 0.85 \\ 0.9 \\ 0.95 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.95 \\ 0.9 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.$	$\Delta \hat{R_{lepS3}}$	ΔR_{lepS3}	$\mathcal{S}(E_T^{miss})$	$\mathcal{S}(E_T^{miss})$
$m_{l1} \qquad m_{j1} \qquad E_T^{miss} \qquad \Delta R_{lepS3}$ $m_{l2} \qquad \Delta R_{lepLS} \qquad m_{l2} \qquad \Delta R_{lepLS}$ $m_{l2} \qquad \Delta R_{lepLS} \qquad m_{j1} \qquad \Delta R_{jet}$	H_T	ΔR_{jet}	m_{j0}	ΔR_{lep3L}
$m_{l0} \qquad \Delta R_{lep3L} \qquad m_{l2} \qquad \Delta R_{lepLS} \qquad m_{j1} \qquad \Delta R_{lepLS} \qquad M_{l2} \qquad M_{l2}$	m_{l1}	m_{j1}	E_T^{miss}	ΔR_{lepS3}
m_{l2} ΔR_{lepLS} m_{j1} ΔR_{jet}	m_{l0}	ΔR_{lep3L}	\bar{m}_{l2}	ΔR_{lepLS}
u 0.95 0.95 0.9 0.95 0.9 0.85 0.85 0.86 BDT 0.75 0.85 0.9 0.75 0.85 0.9 0.75 0.85 0.9 0.75 0.75 0.9 0.75 0.9 0.95 0.75 0.8 0.85 0.9 0.95 1 Signal efficiency	m_{l2}	ΔR_{lepLS}	m_{j1}	ΔR_{jet}
Signal efficiency	1 0.95 0.9 0.85 0.80 0.75 0.7 ₀	MVA Method: BDT MLP Fisher Likelihood		
orginal officially	-		S	Signal efficiency

Figura 4.7: Grafico delle quattro curve ROC, distinguibili grazie alla legenda in figura.

Giuseppe Carratta

Preliminary study of **MVA approach** in one region of the **TriLepton channel** from a <u>bachelor thesis</u>

Significanza MLP

Figura 4.9: Grafico della significanza al variare del valore di $t_{cut,S}$. In azzurro sono riportati i singoli valori di $\mathcal{S}(t_{cut,S})$ calcolati tramite 4.11.

