Search for heavy neutral leptons from D_s decays in CMS

G.Abbiendi, C.Battilana, A.Fanfani, L.Guiducci, L.Lunerti

EXP/TH meetings - Seesaw at colliders - 11 May 2023

Outline

Overview of the HNL search from Ds decays

- Data set: 2018 CMS B-Parking data set
- Analysis workflow
- MC: $D_s \rightarrow N(\rightarrow \mu \pi) \mu$ generation using pythia+evtgen
- Expected limits on the active-sterile neutrino mixing $|V_{\mu}|^2$

In a nutshell

- Search for right-handed neutrinos within vMSM [1], called heavy neutral leptons (HNL) or simply heavy neutrinos (N)
- assuming HNL mixing only with $v_{\mu} (|V_e|^2 = |V_{\tau}|^2 = 0)$
- production from D_s
 - leptonic decays of $D_s (D_s \rightarrow N + \text{lepton})$ dominate in the HNL production from charmed mesons [2] → using $D_s \rightarrow N\mu$
 - \circ sensitive to N mass below D_s mass (\leq 2 GeV)
- decay of N to a fully visible final state \Rightarrow using $N \rightarrow \mu \pi$

Fully visible final state allows to :

- reconstruct the secondary vertex formed by the N decay products (μ and π)
 - search N decaying within the tracker volume (<1m)
- reconstruct the invariant mass of the N with optimal resolution
 - narrow peak for background rejection and bump hunting
- $\mu\mu\pi$ must be compatible with the D_s meson mass

Profiting from **B-parking data collected by the CMS** experiment during 2018 at \sqrt{s} = 13 TeV

"The vMSM, dark matter and neutrino masses" T. Asaka, S. Blanchet, and M. Shaposhnikov <u>10.1016/j.physletb.2005.09.070</u>
"Phenomenology of GeV-scale Heavy Neutral Leptons": K.Bondarenko, A.Boyarsky, D.Gorbunov, O.Ruchayskiy <u>10.1007/JHEP11(2018)032</u>

3

D

2018 B-Parking data set

B-Parking data stream: events were recorded with higher trigger rate, written (parked) to tape and reconstructed at a later stage (<u>DP Note 2019-043</u>)

- HLT rate for the B-Parking stream (blue curve) increases in steps at changes in the prescale column (red dashed) during a CMS run, reaching as high as ~5 kHz
- Trigger logic requires the presence of at least a single, non-prompt muon
 - low thresholds on the muon p_T , mainly restricted in $|\eta|$ <1.5
 - thresholds on impact parameter significance (IP)
 - the thresholds evolve during a fill, as the instantaneous luminosity falls

Large BB(bar) dataset collected

- ~ 10 billion events containing unbiased decays of B hadrons
- Total luminosity of 41.7 /fb at \sqrt{s} = 13 TeV

B-parking HLT paths						
HLT Mu7 IP4						
HLT Mu8 IP3						
HLTMu8IP5						
HLTMu8IP6						
HLT $\overline{Mu8p5}$ IP3p5						
HLT Mu9 IP4						
HLTMu9IP5						
HLTMu9IP6						
HLT $Mu10p5$ IP3p5						
HLT Mu12 IP6						

Tag-side: b→µX Signal-side: unbiased b hadron decays

х

BS

HNL from D_s decays: strategy

- Exploiting the exclusive $D_s \rightarrow N(\rightarrow \mu \pi)\mu$ decay
 - The D_s can be fully reconstructed
 - \circ Inclusive D_s production
 - Sensible to HNL masses below D_s mass
 - exploring $|V_{\mu}|^2$ down to ~10⁻⁵
- Signal yield estimated using the $D_s \rightarrow \phi(\rightarrow \mu \mu)\pi$ normalization channel

- $D_s \rightarrow N(\rightarrow \mu \pi)\mu$ MC samples generated for 1.0 GeV and 1.5 GeV mass points and $c\tau = 10,100,1000$ mm points
 - reweighting signal using HNL proper lifetime for a fine cτ scan
- Background yield estimation from data using HNL mass sidebands

1.9 1.95

2 2.05 2.1 2.⁻ m(μμπ) [GeV]

1.75 1.8 1.85

 π

$D_s \rightarrow N(\rightarrow \mu \pi)\mu$ simulation

The choice of the event generation setup was driven by what is currently available and fully integrated in the CMS production workflow, which is based on CMS software (CMSSW)

- A first test was done using <u>SHERPA</u>: fully integrated in CMSSW and allowed an easy integration of the <u>heavy neutrino model</u>, however it was not possible to generate the heavy neutrino from D_s meson decays
- HNLs were also integrated in PYTHIA, but the integration is not available in the central PYTHIA software → it was very complicated to integrate it in the full CMSSW-based production workflow
- A final compromise has been found using PYTHIA for the generation of the hard event and <u>EVTGEN</u> as decayer:
 - **PROS**
 - easy to use and fully integrated in the CMSSW software;
 - largely used in the CMS B-Physics community;
 - already in use in a similar analysis searching for HNL from B decays;
 - CONS

 - no model for spin correlation is available in evtgen for massive neutrinos: a simple phase space model is used to simulate the $Ds \rightarrow N(\rightarrow \mu \pi)\mu$ decay

HNL from D_s decays: workflow

- Signal/background discrimination using QCD MC to model combinatorial background shape
- Event categorization based on:
 - Opposite/Same muon sign

- <u>HNL displacement</u> L_{xy} in cm: (0,1), (1,5) and (5, ∞)
- HNL vertex significance, μ and π IP/IPS used for selection optimization
- Selection cuts optimized <u>maximizing the</u> <u>discovery significance</u> $Z_0 = \sqrt{2\left[(s+b)\ln\left(1+\frac{s}{b}\right)-s\right]}$

HNL from D_s decays: results

- The analysis is still blinded!
 - It has till to go through the CMS results Ο approval process
- Expected limit at 95% confidence level on $|V_{\mu}|^2$
 - Ο
 - for $m_N = 1.0 \text{ GeV} \sim 10^{-4}$ for $m_N = 1.5 \text{ GeV} \sim 7 \times 10^{-5}$ 0

- BELLE "Search for heavy neutrinos at Belle" (2013) 10.1103/PhysRevD.87.071102
- LHCb (2014) 10.1103/PhysRevLett.112.131802 + "Revision of the LHCb limit on Majorana neutrinos" B.Shuve, M. E. Peskin 10.1103/PhysRevD.94.113007

BACKUP

Possible involvement in future analyses

• production of N via the decay of W bosons

The HNL lifetime only depends on **mass** and v-N coupling:

- search for N decaying in the muon detector
 - producing particle showers detected as high multiplicity cluster of muon detector hits
- N with c_{τ} between 0.5 and 10 m \Rightarrow probing m_N below 5 GeV
- trigger on high multiplicity hits in muon detector to be developed

Production from Ds

"Phenomenology of GeV-scale Heavy Neutral Leptons": K.Bondarenko, A.Boyarsky, D.Gorbunov, O.Ruchayskiy <u>10.1007/JHEP11(2018)032</u>

Figure 4. Dominant branching ratios of HNL production from different charmed and beauty mesons. For charged mesons two-body leptonic decays are shown, while for the neutral mesons decays are necessarily semi-leptonic. For these plots we take $U_e = 1$, $U_{\mu} = U_{\tau} = 0$.

"Probing the Majorana neutrinos and their CP violation in decays of charged scalar mesons π , K, D, Ds, B, Bc * "G.Cvetic, C.Dib, C. S. Kim, J. Zamora-Saa (2015) https://doi.org/10.48550/arXiv.1503.01358

FIG. 5: The same as in Figure 4, but now for the decay of (a) D^{\pm} mesons; (b) D_s^{\pm} mesons. The solid lines are for $\ell = e$, and c the dashed lines for $\ell = p$.

TABLE III: Values of the factor \overline{Br}_{eff} , Equation (32), with L = 1 m and $\gamma_N = 2$, for some of the LNV decays $M^{\pm} \rightarrow \ell^{\pm} \ell^{\pm} \pi^{\mp}$. The value of M_N is chosen such that the maximal value of \overline{Br}_{eff} is obtained (the value of M_N is given in parentheses, in GeV). For $M^{\pm} = K^{\pm}$, two different values are given, for $\ell = e$ and $\ell = \mu$. For all other cases, $\ell = \mu$ is taken (when $\ell = e$ the values are similar).

M^{\pm} :	$K^{\pm} \ (\ell = e)$	$K^{\pm} \ (\ell = \mu)$	D^{\pm}	D_s^{\pm}	B^{\pm}	B_c^{\pm}
$\overline{\mathrm{Br}}_{\mathrm{eff}}$	6.8(0.38)	3.8(0.35)	3.9(1.39)	70. (1.47)	0.96(3.9)	199. (4.7)

Multiplying this expression by the probability P_N of the decay in the detector, Equation (26), we obtain the effective branching ratio Br_{eff}

$$\operatorname{Br}_{\mathrm{eff}}(M^{\pm} \to \ell^{\pm} \ell^{\pm} M^{'\mp}) = P_{N} \operatorname{Br}(M^{\pm} \to \ell^{\pm} \ell^{\pm} M^{'\mp}) = \left[\overline{P}_{N}\left(\frac{L}{\operatorname{1m}}\right) \widetilde{\mathcal{K}}\right] \times \left[4 \frac{|B_{\ell N}|^{4}}{\widetilde{\mathcal{K}}} \overline{\operatorname{Br}}\right]$$
(31a)

$$= \left(\frac{L}{1\mathrm{m}}\right) 4|B_{\ell N}|^4 \overline{P}_N \overline{\mathrm{Br}} \equiv |B_{\ell N}|^4 \left(\frac{L}{1\mathrm{m}}\right) \overline{\mathrm{Br}}_{\mathrm{eff}}$$
(31b)