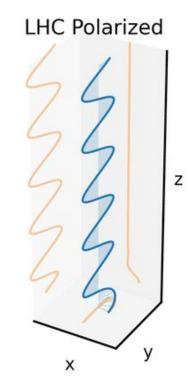
X-ray Polarimetry Detectors

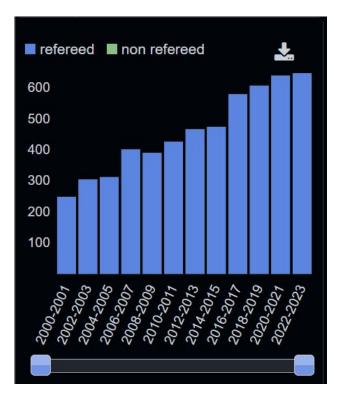
Luca Latronico (and colleagues) luca.latronico@to.infn.it

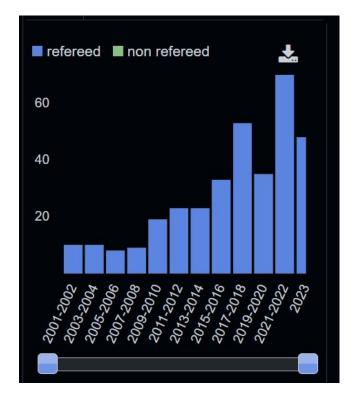
Outline

- Motivation X-ray polarimetry in astrophysics
- Technology the Gas Pixel Detector and the IXPE mission
- Laboratory activities sneak peek


The importance of polarimetry in astronomy

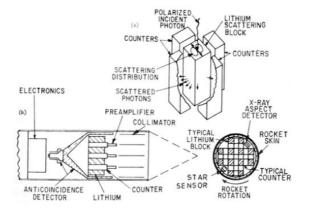
Photons at all wavelength are ideal probe in astronomy as the carry information of


- Impact point \rightarrow sky maps
- Energy \rightarrow spectra
- arrival time \rightarrow dynamics and transport


Besides these obvious information, polarization provides information on

- Emission processes \rightarrow synchrotron, non-thermal bremsstrahlung, Inv Compton
- Source geometry \rightarrow scattering with surrounding medium
- Transport processes and fundamental physics \rightarrow LIV, ALP

Polarimetry in astronomy (NASA ADS)



5.5k abstracts with *polarimetry*, rising trend

341 abstracts with *X-ray polarimetry*, peak in 2022

Astrophysical X-ray polarimetry primer

Limited to the historical OSO-8 measurement (1970s) until IXPE for lack of sensitive instruments.

Check-out a brief history of the field at Weisskopf, Galaxies 2018, 6, 33

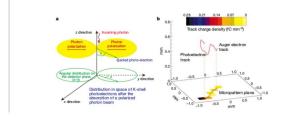
KeV X-ray polarimetry in gas - a long development

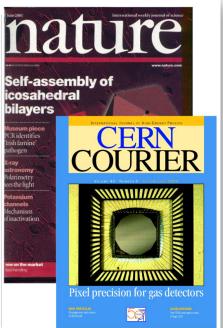
letters to nature

An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars

Enrico Costa*, Paolo Soffitta*, Ronaldo Bellazzini Alessandro Brezt, Nicholas Lumb† & Gloria Spandre

* Istituto di Astrofisica Spaziale del CNR. Via Fosso del Cavaliere 100. 1-00133. Rome, Italy † Istituto Nazionale di Fisica Nucleare-Sezione di Pisa, Via Livornese 1291,

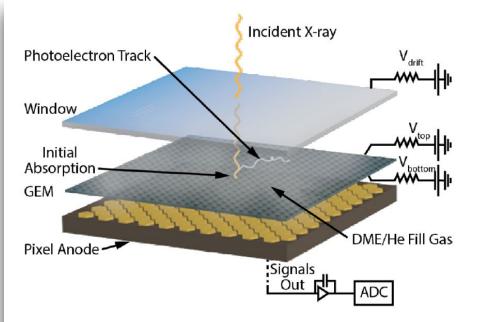

I-56010 San Piero a Grado, Pisa, Italy


The study of astronomical objects using electromagnetic radiation involves four basic observational approaches: imaging, spectroscopy, photometry (accurate counting of the photons received) and polarimetry (measurement of the polarizations of the observed photons). In contrast to observations at other wavelengths, a lack of sensitivity has prevented X-ray astronomy from making use of polarimetry. Yet such a technique could provide a direct picture of the state of matter in extreme magnetic and gravitational fields1-6, and has the potential to resolve the internal structures of compact sources that would otherwise remain inaccessible, even to X-ray interferometry7. In binary pulsars, for example, we could directly 'see' the rotation of the magnetic field and determine if the emission is in the form of a 'fan' or a 'pencil' beam^{1,8}. Also, observation of the characteristic twisting of the difference between the photon energy and the binding energy. the polarization angle in other compact sources would reveal the The direction of emission is not uniform but is peaked around that presence of a black hole⁹⁻¹². Here we report the development of an of the electric field of the photons (see Fig. 1a). This photoelectron

instrument that makes X-ray polarimetry possible. The factor of 100 improvement in sensitivity that we have achieved will allow direct exploration of the most dramatic objects of the X-ray sky. The main advantage of the proposed polarimeter is its capability of investigating active galactic nuclei (quasars, blazars and Seyfert galaxies) for which polarization measurements have been suggested, crucial to understand the geometry and physics of emitting regions. We can separate synchrotron X-rays from jets13.14 from the emission scattered by the disk corona or by a thick torus. The effects of relativistic motions and of the gravitational field of a central black hole have probably been detected by iron line spectroscopy on the Seyfert-1 galaxy MCG-6-30-15 (ref. 15) but this feature is not ubiquitous in active galactic nuclei. Polarimetry of the X-ray continuum provides a more general tool to explore the structure of emitting regions^{16,17}, to track instabilities and to derive direct information on mass and angular momentum¹² of supermassive black holes

In spite of this wealth of expectations, the important but only positive result until now is the measurement, by the Bragg technique, of the polarization of the Crab nebula 18,19. The Stellar X-ray Polarimeter²⁰ (SXRP) represents the state of the art for conventional methods based on Bragg diffraction and Thomson scattering. However, Bragg polarimetry21 is dispersive (one angle at one time) and very narrow-band. Thomson polarimetry22 is nonimaging and band-limited (>5 keV). This limits the sensitivity of SXRP to a few bright, galactic sources only.

The photoelectric effect is very sensitive to polarization. The electron is ejected from an inner shell with a kinetic energy which is



Nature - 2001 - TRL 4 (functional verification)

Nature Astronomy - 2020 - TRL 9 - flight proven

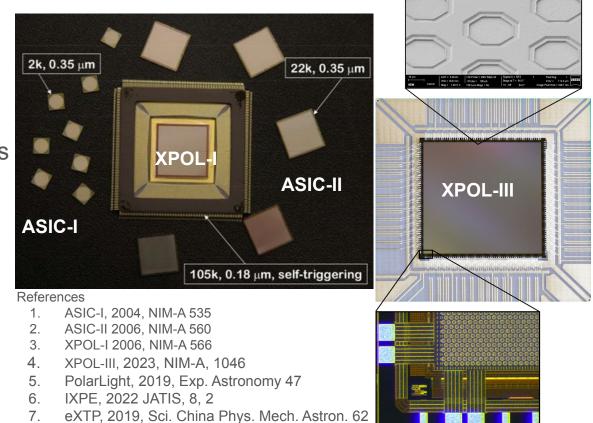
Tracking X-ray photons as single events requires

- a reasonably efficient photon to charge converter
- a sensor (or amplifier) providing O(10⁴) electrons
- a highly efficient, asynchronous, auto trigger
- a high density array of charge collecting anodes
- a distributed network of low-noise charge amplifiers
- a fast and configurable digital control readout to transfer data and clear the detector
- good reconstruction algorithms

- Photoelectric effect dominant for soft (< 10 keV) X-rays
- K-shell photo-electron emission
 100% modulated for linearly ploarized radiation:

$$\frac{d\sigma_{\rm C}^{\rm K}}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta\cos^2\phi}{(1+\beta\cos\theta)^4}$$

Typical track length ~ few µm in solid: a gaseous medium is needed!

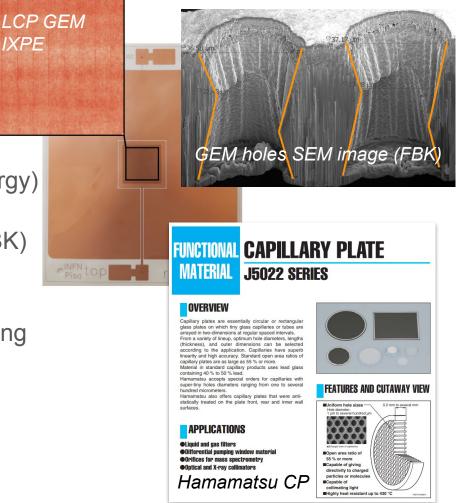

- ▷ X-ray absorption in a gas gap
- ▷ Signal amplification via a Gas Electron Multiplier (GEM)
- ▷ Finely pixelized ASIC as readout anode
- ho
 ight. Sensitive in the ho
 ight. 2-8 keV band
- ▷ Full two-dimensional imaging and spectroscopy

The Gas Pixel Detector Concept

The XPOL ASICs family - a 20+ years development

Four generations of increasing size, reduced pitch, improved functionality

- First VLSI implementations
- XPOL-I, largest scale
 - Operating onboard
 Polarlight and IXPE
- XPOL-III, ~10x faster readout
 - Ready to fly on eXTP


Electron multipliers

Gas Electron Multiplier (GEM)

- LCP GEM qualified for space (SciEnergy)
- GEM wet-etched (Techtra, CERN)
- GEM RIE dry-etched (new R&D w/ FBK)

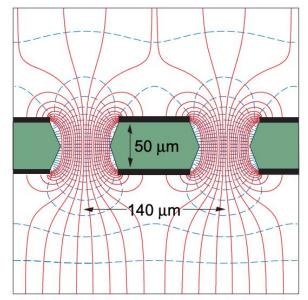
Capillary plates

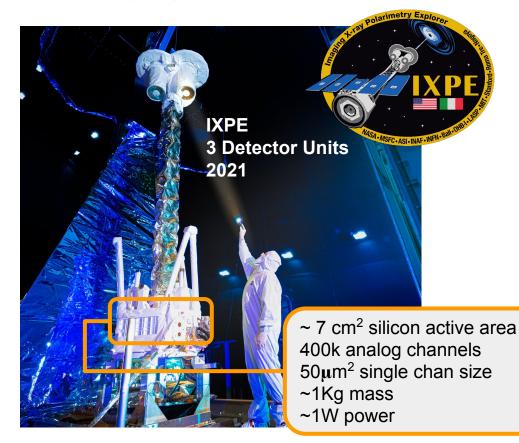
• Demonstrated to work but far from being qualified

Gas Electron Multiplier - GEM

33

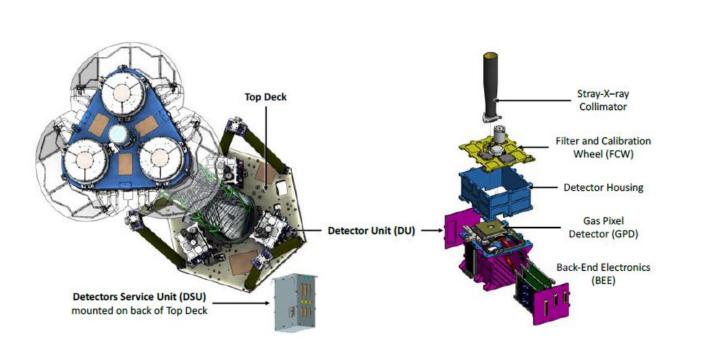
35. Particle Detectors at Accelerators




Figure 35.10: Schematic view and typical dimensions of the hole structure in the GEM amplification cell. Electric field lines (solid) and equipotentials (dashed) are shown. Electron trajectories do not strictly follow the field lines as drifting electrons scatter isotropically with gas molecules and diffuse transversally.

Principle of operation explained in the standard textbooks, eg <u>PDG Review</u>.

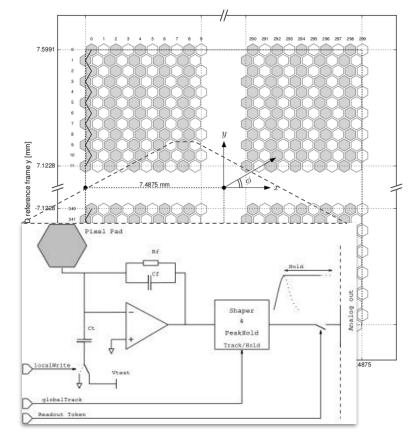
IXPE GEM are different in:


- Geometry (50um pitch, 50um thickness)
 - Matches ASIC pattern
 - Reduces operating voltage
- Insulation material (LCP vs Kapton)
 - Minimizes charging
- Footprint (15mm2 active surface)
 - Matches ASIC footprint


The Imaging X-ray Polarimetry Explorer Mission

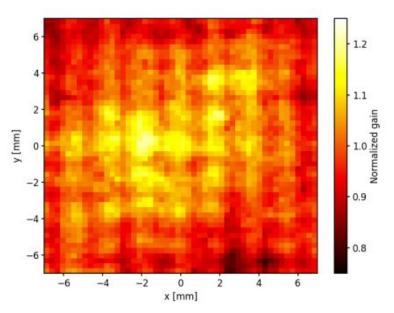
IXPE launch December 9 2021 In science ops since Jan 2022 General Observer program starts March 2024

IXPE Detector Unit and GPD breakouts


The IXPE XPOL chip layout and single pixel FE chain

CMOS VLSI chip built with 180nm technology

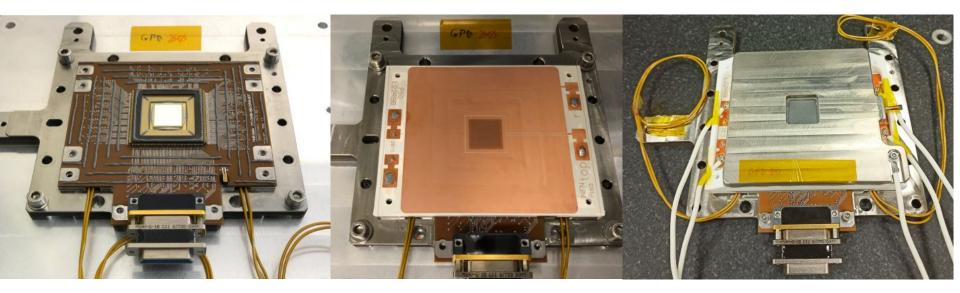
- 16M+ transistors
- 105k hexagonal pixels (300x352)
- 15mm² 470 pixel/mm² density


Each pixel contains

- Hexagonal metal top layer
- Charge sensitive amplifier (~400mV/fC)
- Shaping circuit (~4usec)
- Low noise (<30e ENC)
- Multiplexer to external ADC (1V dynamic, ~30ke)

The IXPE GEM

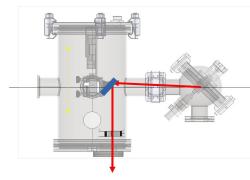
Parameter	Value		
Number of holes	112008 (359 × 312)		
Horizontal pitch	43.30 μm		
Vertical pitch	50.00 μm		
Hole diameter	30 µm		
Hole diameter dispersion	~ 1 μ m (typical)		
Top-bottom alignment	$\sim 2 \mu m$ (typical)		
Metal coating	Copper		
Coating thickness	5 μm		
Substrate	Liquid crystal polymer (LCP)		
Substrate thickness	50 μm		
Manufacturing process	Laser etching		
Typical operating voltage	~ 470 V		
Gain gain scaling	$\propto \exp(\sim 0.03 \text{ V})$		
Working effective gain	~ 200		

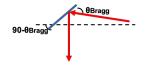


XPOL Laboratory Activity

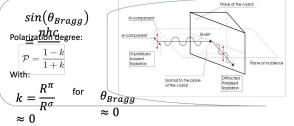
Check list						
Activity	Synopsis	Check	Note			
1	Feel & touch a GPD - GEM, XPOL and mechanics					
	Learn about the XCF - source, vacuum, scanners and beam monitors	1				
2	Charge injection on XPOL ASIC - readout test					
	Single event display and photo electron track reconstruction					
	Switch on the GPD: ramp up and gain curve - PHA vs HV GEM					
3	XCF test lines - visualize spectra with an SDD					
	GPD energy calibration and linearity					
	GPD rate effects					
4	GPD polarization sensitivity - modulation curves					
	Systematic effects - charging and residual modulation					

Main reference - https://arxiv.org/abs/2107.05496

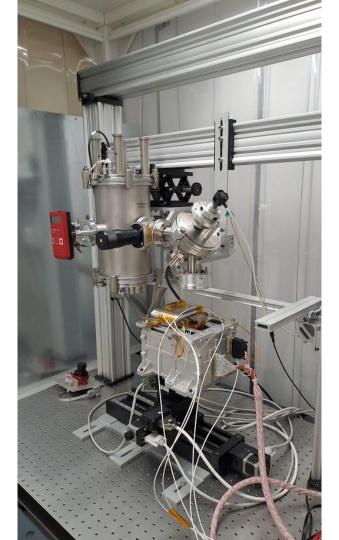

The actual IXPE GPD

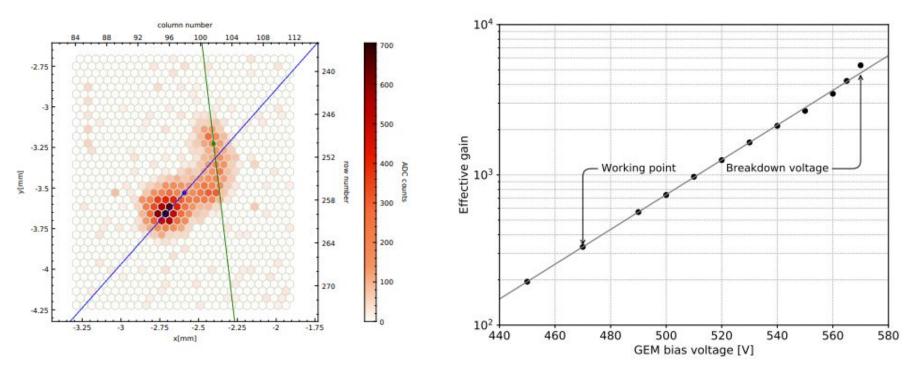

XPOL laboratory activity 1 - feel and touch a GPD

The X-ray Calibration Facility


Polarized beam

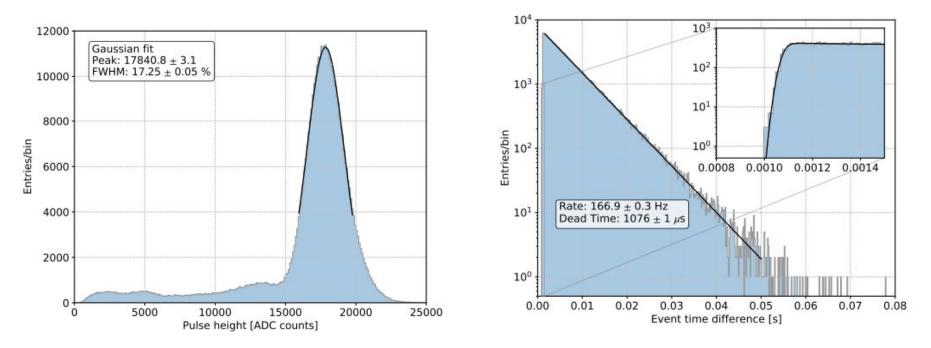
selecting vertical output with capillary plate, the geometry is fixed



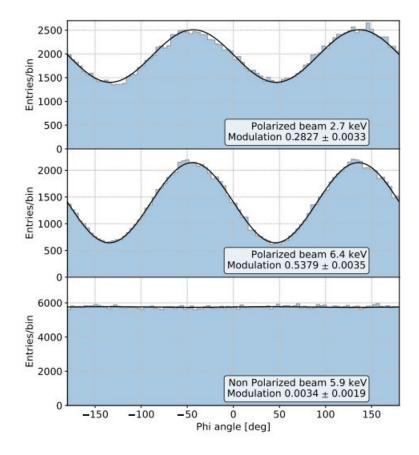


Anode line	E [KeV]	Xtal	2d (A)	θBragg	Р
Mo Lα	2.2932	InSb111	7.481	46.28	99.32%
Rh Lα	2.697	Ge111	6.532	44.87	99.28%
Pd La	2.839	Si111	6.271	44.12	>95.08%
Τί Κα	4.511	Si 220	3.840	45.71	99.51%
Fe Ka	6.404	Si 400	2.7142	45.5	99.7% ??
Ni kα	7.478	Ge 422	2.31	45.86	99.04%

XPOL laboratory activity 1 - learn about the XCF

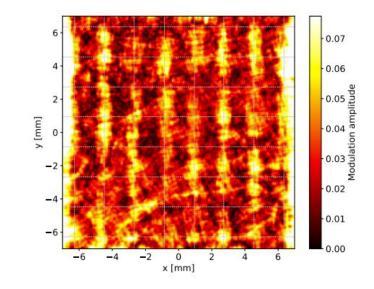


GPD setup and basic response



XPOL laboratory activity 2 - single event display and gain curve Addon activity - GPD event reconstruction walkthrough

GPD Performance



XPOL laboratory activity 3 - energy calibration and rate effects

XPOL laboratory activity 4 - modulation curve

GPD response to polarized photons

Addon activities

- Discuss systematic effects (charging, secular variation, residual modulation)
- Bragg scattering X-ray polarization focus

Team and acknowledgements

Contributing Teams

- INFN Torino and University of Torino: M. Aglietta, R. Bonino, N. Cibrario, A. Frassa, A. Gorgi, L. Latronico, S. Maldera, S. Tugliani
- INFN Pisa and University of Pisa: R. Bellazzini, L. Baldini, M. Minuti, C. Sgro, G. Spandre

Financial support from

- INFN
- ASI (Agreements IXPE-2017.13-H.0, ADAM-2018.11-HH.0, eXTP-2020-3.HH.0)
- University of Torino (Bando CSP/Ateneo 2020, "Piccole e medie attrezzature di ricerca")
- NODES Project MUR M4C2 1.5 of PNRR with grant agreement no. ECS00000036

Enjoy the laboratory!