X-Ray Polarimetry Detectors @ XCF (X-ray calibration facility)

Simone Maldera

XCF: X-ray Calibration Facility @Torino

Irradiation setup in Torino, to test, characterize and qualify

- Gas Pixel Detectors
- Position- energy- and **polarization**-sensitive X-ray detectors.

XCF: X-ray Calibration Facility

Main Characteristics:

- Multi-anode Xray source
- two output beams, one polarized
- Crystal positioning: height θ, φ axes
- Detector positioning: Two couples x-y stages One rotary stage
- Source and polarizer cylinder in vacuum (~10⁻⁶ hPa)

X-ray source: McPherson 462

Specifications

6 interchangeable solid anodes

Flux in bright lines: ~10¹¹ photons s⁻¹ sr⁻¹

Emission uniformity: Dual beam output, balanced

Power: 30W, 10 kV max, 3mA

Operating pressure: 10⁻⁶ torr range or lower

Selected anodes:

Anode	Мо	Rh	Pd	Ti	Fe	Ni
Line	Lα	Lα	Lα	Κα	Κα	Κα
E [KeV]	2.293	2.697	2.839	4.511	6.404	7.478

We control manually both voltage and anode current

Beam monitors

- Amptec fast SDD

25 mm² active area

Resolution of 122 eV FWHM at 5.9 keV $\sim 2\%$

Count rates > 1,000,000 CPS

Windows: Be 12.5 µm

- Modified* optical sensor (sony IMX294)

*glass cover removed

4144x2822 pixels (4.63 um) Energy resolution (FWHM) ~2.2% @6keV Efficiency ~10% @6keV w.r.t SDD

X-ray source: measured output

Spatial uniformity

Measured with sony cmos

Measured with Ampek fast SDD

SNRI 9-12 Ottobre 2023

Energy:

Air attenuation:

At low energy air attenuation is important!

Air attenuation:

At low energy air attenuation is important!

We need to keep the detctor as close as possible to the exit window

Polarization by Bragg diffraction at 45°

Bragg condition

$$\sin(\theta_{Bragg}) = \frac{nhc}{2dE}$$

Polarization degree:

$$\mathcal{P} = \frac{1-k}{1+k}$$
With: $k = \frac{R^{\pi}}{R^{\sigma}} \approx 0$ for $\theta_{Bragg} \approx 45^{\circ}$

Polarized beam

selecting vertical output with capillary plate, the geometry is fixed

InSb111 xtal positionig: angle

InSb111 xtal positionig: height

GPD: High voltages **Typical values:** Vdrift -2800 V Drift plane $V_{\rm top}$ Auger electron track Photoelectron track 850 V 🔺 -ΔVGEM - 400 V GEM Vbotton Pixel anode 0 V

Gem gain scales as:

$$G(V) = G_0 e^{\gamma V}.$$

In the lab we control the GPD HV levels with an external module.

We set Vdrif , Vbottom, and Δ Vgem

GPD Modulation factor

Comparison cmos SDD: rate

Efficiency with respect to SDD:

Kalpa = 2830/22070 ~ 12% Kbeta \rightarrow 315/2929 ~ ~ 10%

Luxel window

Large Area X-ray Window

d=16mm

Specifications

Mesh Open Area	80%		
Rib Thickness	100 µm		
Rib Width	30 µm		
Maximum Temperature	100°C		
He Leak Rate	<1E-9 mbar-L/sec		
Front SidePressure Limit	1 atm		
MaximumAperture	25mm		

Rh-Ge111: energy-position

As expected different energies are diffracted at different angles

Polarized beam measurements: Rh - Ge111

