Reconstruction of the track parameters for polarization measurements

Nicolò Cibrario

Università degli Studi di Torino

From tracks to polarization

$$\frac{d\sigma_c^k}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta \cos^2\phi}{(1+\beta\cos\theta)^4}$$

From tracks to polarization

$$\frac{d\sigma_c^k}{d\Omega} \propto Z^5 E^{-\frac{7}{2}} \frac{\sin^2\theta \cos^2\phi}{(1+\beta\cos\theta)^4}$$

Moment Analysis

1.Determination of the barycenter and of the second moment of the distribution of charge

$$\begin{split} x_b &= \frac{\sum_i q_i x_i}{\sum_i q_i} \quad y_b = \frac{\sum_i q_i y_i}{\sum_i q_i} \\ M_2(\phi) &= \frac{\sum_i q_i [(x_i - x_b) cos(\phi) + (y_i - y_b) sin(\phi)]^2}{\sum_i q_i} \end{split}$$

2. Determination of the third moment of distribution of charge to select the initial part of the track

$$M_3(\phi) = \frac{\sum_{i} q_i [(x_i - x_b) cos(\phi) + (y_i - y_b) sin(\phi)]^3}{\sum_{i} q_i}$$

3. Calculation of the weights respect to the initial part of the track, and subsequent determination of the impact point

$$\begin{aligned} w_i &= e^{-\frac{d_{b,i}}{d_s}} \\ x_{IP} &= \frac{\sum_i w_i x_i}{\sum_i w_i} \quad y_{IP} = \frac{\sum_i w_i y_i}{\sum_i w_i} \end{aligned}$$

4. Re-determination of the second moment of charge distribution, this time respect to the predicted impact point

$$M_2'(\phi) = \frac{\sum_i w_i [(x_i - x_{IP}) cos(\phi) + (y_i - y_{IP}) sin(\phi)]^2}{\sum_i w_i}$$

Examples

The reconstruction of the emission angle φ depends on the quality of the impact point reconstruction

Imperfect reconstruction: implication

Modulation factor: reconstructed polarization fraction for a 100% polarized beam

Hybrid algorithm: joining CNN and moment analysis

We developed a network specifically for the impact point reconstruction

The CNN-predicted impact point replaces the one predicted by the standard moment analysis

Calibration before flight

GPDs were calibrated at IAPS in Rome.

As is common in detectors made of pixels, the different pixels have a different gain.

Calibration before flight

Before measuring the response to polarized light, it is crucial to verify the response to unpolarized light.

UNPOLAIRZED BEAMS:

Configuration	Energy [keV]
Fluorescence of Zr target illuminated by Rh anode	2.04
Fluorescence of Mo target illuminated by Ag anode	2.29
Direct X-rays with Rh anode	2.70
Direct X-rays with Ag anode	2.98
Direct X-rays with Ca anode	3.69
$^{55}\mathrm{Fe}$ nuclide	5.89

Spurious modulation

When illuminated by unpolarized beams, the detected polarization is not 0!

Energy [keV]	Standard Moment Analysis μ [%]
2.04	1.5 ± 0.2
2.29	1.2 ± 0.2
2.70	1.6 ± 0.2
2.98	4.0 ± 0.2
3.69	0.8 ± 0.2

Calibration before flight

