

Kaon production Study with Liquid Argon TPC of MicroBooNE for DUNE

Midterm Review Meeting- INTENSE 24 June 2022

Natsumi Taniuchi – University of Cambridge ntaniuchi@hep.phy.cam.ac.uk Supervisor: Dr Melissa Uchida mauchida@hep.phy.cam.ac.uk

Attended Courses, Conferences, and Workshops

- Lecture for modern particle physics (Oct. 2021 – Mar 2022)
- Machine learning course (Oct. 2021 – Mar 2022)
- First-year report/exam (Jul. Aug. 2022)
- LArSoft Workshop (1 Nov. – 3. Nov 2021)
- MicroBooNE Analysis Retreat Workshop (9 May – 13 May 2021)
- Annual Intense Workshop (2 Feb. - 4 Feb. 2022)

- Cavendish Graduate Conference, poster presentation (25 Nov. 2021)
- MicroBooNE Collaboration Meeting (2 May. – 6 May. 2022)
- DUNE Collaboration Meeting (16 May. – 20 May. 2022)
- MicroBooNE Collaboration Meeting (in person, talk) (17 Jan. – 20 Jan. 2023)
- IOP HEPP Annual Conference (in person, poster) (3 Apr. – 5. Apr. 2023)

LArTPC Experiments: DUNE and MicroBooNE

DUNE

- Detector installation beginning in mid 20s
- ► Near and Far detectors located ~1300 km apart
 - Near detector: Complex of detectors for v properties
 - Far detector: <u>40 kton LArTPC</u> with $\sim 10^{35}$ of protons
- **>** Proton decay search: $p \rightarrow \overline{\nu}K^+$

MicroBooNE

- 85 ton LArTPC running 2015 2021
- 0.25-2 GeV v beam from the Booster Neutrino Beam (BNB) and the Neutrino Main Injector (NuMI)
- ► Available data of ~10²⁴ POTs

My Research: K⁺ Production by CCNu Interactions in MicroBooNE

✓ Why K+ study is important?

- Better understanding of K+ backgrounds from atmospheric neutrinos for future proton decay research at DUNE
- No measurements on Ar at 1 GeV neutrino energy region

✓ 2 modes to produce K^+ by neutrino interactions in Ar

- Associated kaon production: ie. $\nu_{\mu} + p \rightarrow \mu^{-} + K^{+} + \Sigma^{+}$
- Single kaon production: ie. $\nu_{\mu} + p \rightarrow \mu^{-} + K^{+} + p$

✓ Search K^+ events with NuMI beam by Machine Learning

- Measure cross section of K^+ and install for future DUNE simulation
- Develop better Kaon-proton PID separation

K⁺ Event Features and Training by BDT

- ✓ True signal: ν_{μ} + Ar → μ^{-} + K^{+} + nucleons/Hyperon
- ✓ Possible BG events: v_{μ} + Ar → μ^{-} + π^{-} + p

xi > c1

xj > c2 xj < c2

xi < c1

xj > c3 xj < c3

S

BDT Selection with MC Simulation

χ_p^2 vs χ_K^2 Track PID Score Plots of Collection Plane

K^+ Event without BDT: χ^2 PID Scores and Daughter Track Length

Breakdown of BDT and χ^2 -cut Selected Events

BDT selected					χ^2 -cut selected				
Run Subrun Event	Subrun True Interaction		Daughter PDG	FV	Run Subrun True Interaction		Track PDG	Daughter PDG	FV
6535 42 2101	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{0} K^{+}$	321	-13	\checkmark	6535 42 2101	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{0} K^{+}$	321	-13	\checkmark
6637 58 2914	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	6637 58 2914	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark
6605 85 4264	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n 2p$	321	-13	\checkmark	6605 85 4264	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n 2p$	321	-13	\checkmark
6689 43 2152	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	6689 43 2152	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark
6572 218 10949	CC DIS $\nu_{\mu} Ar \rightarrow \mu^- \Sigma^+ K^+ \pi^+ n$	321	-13	\checkmark	6572 218 10949	CC DIS $\nu_{\mu} Ar \rightarrow \mu^- \Sigma^+ K^+ \pi^+ n$	321	-13	\checkmark
6572 226 11334	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	6572 226 11334	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark
6589 64 3207	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{+} K^{+} 8p 3n \pi^{+} \pi^{-} \pi^{0}$	321	-13	\checkmark	6589 64 3207	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{+} K^{+} 8p 3n \pi^{+} \pi^{-} \pi^{0}$	321	-13	\checkmark
7004 549 27485	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	7004 549 27485	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark
6549 20 1014	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$	321	-13	\checkmark	6605 10 526	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	
6599 30 1530	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	6888 124 6632	NC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} \pi^{0}$	321	-13	
6605 10 526	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13		6908 91 4597	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+}$	321	-13	
6888 124 6632	NC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} \pi^{0}$	321	-13		6827 220 11018	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} 3p 3n \pi^{+}$	2212	221	
6908 91 4597	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+}$	321	-13		6766 41 2054	CC QE $v_{\mu} Ar \rightarrow \mu^{-} 4p n$	2212	2212	
6674 21 1095	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+} n$	321	-13		6959 115 5757	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} 2p 2n \pi^{+} \pi^{-}$	2212	13	

Efficiency: 5.4%, Purity: 71%, E*P: 0.038

UNIVERSITY OF CAMBRIDGE

Efficiency: 4.3%, Purity: 57%, E*P: 0.025

9

Better performance with BDT Selected Events

Run Subrun Event	True Interaction	<i>K</i> + candidate true PDG	<i>K</i> + daughter candidate true PDG	FV	K Process	
6535 42 2101	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{0} K^{+}$	321	-13	\checkmark	Decay at rest	
6549 20 1014	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$	321	-13	\checkmark	Decay at rest	
6637 58 2914	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	
6605 85 4264	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n 2p$	321	-13	\checkmark	Inelastic	
6689 43 2152	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	
6572 218 10949	CC DIS $\nu_{\mu} Ar \rightarrow \mu^- \Sigma^+ K^+ \pi^+ n$	321	-13	\checkmark	Decay at rest	
6599 30 1530	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Inelastic	
6572 226 11334	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	Eff: 5.4% Pur: 71%
6589 64 3207	CC DIS $\nu_{\mu} Ar \rightarrow \mu^- \Sigma^+ K^+ 8p \ 3n \ \pi^+ \ \pi^- \ \pi^0$	321	-13	\checkmark	Decay at rest	E*P: 0.038
7004 549 27485	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	BDT cut
6605 10 526	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13		Decay at rest	
6888 124 6632	NC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} \pi^{0}$	321	-13		Inelastic	Same
6908 91 4597	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+}$	321	-13		Inelastic	as BDT w
6674 21 1095	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+} n$	321	-13		Decay in flight	track length

Better performance with BDT Selected Ever Can be missing a few events from $K^+ \rightarrow \mu^+ \nu_{\mu}$ (~63.6%) $K^+ \rightarrow \pi^+ \pi^0$ (~20.7%)

Run Subrun Event True Interaction			<i>K</i> + candidate true PDG	<i>K</i> + daughter candidate true PDG	FV	K Process	
$6^{525 + 42 + 2101} CC PES y Ar \rightarrow y^{-} \Sigma^{0} K^{+}$			321	-13	\checkmark	Decay at rest	
6	Length of daughter track		321	-13	\checkmark	Decay at rest	
6	Effective for selection of μ^+ as K^+ daughter.		321	-13	\checkmark	Decay at rest	
6			321	-13	\checkmark	Inelastic	
6			321	-13	\checkmark	Decay at rest	
65	σ - - - - - True μ' st 0.14 - - - - True p		321	-13	\checkmark	Decay at rest	
6	Δ 0.12 — — True π* 5 — — Others —		321	-13	\checkmark	Inelastic	
65			321	-13	\checkmark	Decay at rest	Eff: 5.4% Pur: 71%
6		$^- \pi^0$	321	-13	\checkmark	Decay at rest	E*P: 0.038
70			321	-13	\checkmark	Decay at rest	BDT cut
e			321	-13		Decay at rest	
68			321	-13		Inelastic	Same
6	0 10 20 30 40 50 60 70 80 90 100 Daughter Track Length [cm]		321	-13		Inelastic	as BDT w
$6074 21 1090 \qquad v_{\mu} AI \rightarrow v_{\mu} 2 K n$			321	-13		Decay in flight	track length.

Event displays for pi+pi0 signal

✓ Most (~90%) K+ decay at rest
✓ Pi0 will decay into two gammas

Strategy for selecting pi+pi0 events

 $K^+ \rightarrow \pi^+ \pi^0$ Selection:

 $\checkmark \pi^0 \rightarrow 2\gamma$ decay:

- 1. The event should have at least one shower.
- 2. Gap between end of K^+ track and beginning of a shower.
- ✓ Most K^+ decay at rest:
 - 3. Large opening angle between π^+ track and a shower.

$K^+ ightarrow \pi^+ \pi^0$ Reconstruction:

- 50% of true $\pi^+\pi^0$ have more than one shower
- Mis-reconstruction of π^+ : ~99% fails to have reco π^+ track
 - $(\#K^+ \to \mu^+ \nu_{\mu}/K^+ \to \pi^+ \pi^0)$: 23090/7497
 - \circ with reconstructed K^+ track: 2838/742
 - \circ with reconstructed daughter track (μ^+/π^+): 1125/99

 $K^+ \rightarrow \mu^+ \nu_{\mu}/K^+ \rightarrow \pi^+ \pi^0$ true plots

1). Number of reconstructed shower

- ✓ #Event with shower(s) / #All Event: $K^+ \rightarrow \mu^+ \nu_{\mu}$: 38%, $K^+ \rightarrow \pi^+ \pi^0$: 47%, BG: 19%
- $\pi^0 \rightarrow 2\gamma$ is dominant shower source for both modes and BG
- ✓ #Event with reconstructed γ shower / #Event with shower(s): $K^+ \rightarrow \mu^+ \nu_{\mu}$: 56%, $K^+ \rightarrow \pi^+ \pi^0$: <u>79%</u>, BG: 55%
- ✓ Other origins of shower:

 $K^+ \rightarrow \mu^+ \nu_{\mu}$: μ^+ from K^+ decay (11% of n_shw>0 events) $K^+ \rightarrow \pi^+ \pi^0$: π^+ from K^+ decay (10% of n_shw>0 events) Others: e^+ from μ^+ decay

2). Gap between K+ end and shower

3). Opening angle

Summary and Future Plans

- \checkmark K⁺ production cross section measurement would be the key for future proton decay study at DUNE
- ✓ Since it is a very rare process, we will aim to double the statistics by using BNB and NuMI (this study) beams
- ✓ Event selection for v_{μ} CC K^+ studied by 1.) BDT (page 5-6) and 2.) linear cuts (page 7-8) with MC samples
 - Better performance with BDT method: ~5.4% efficiency and ~71% purity
- ✓ BDT only selected $K^+ \rightarrow \mu^+ \nu_{\mu}$ (BR ~64%) where $K^+ \rightarrow \pi^+ \pi^0$ (BR ~21%) where all missed
 - Exclusive selection for $K^+ \rightarrow \pi^+ \pi^0$ is under development with shower information.
 - Looking into details of reconstruction process to seek the cause of mis-reco π^+ events.
- Systematic error estimation ongoing as preparations for real data analysis. This estimation has been taking a long time to generate sufficient MC samples for this rare process.

