The X17 search with the MEGII apparatus at PSI

Hicham Benmansour

INTENSE: Particle Physics Experiments at the Intensity Frontier

The Beryllium Anomaly

2023 data taking: conditions, trigger and reconstruction

2) Gamma analysis

3) MC vs Data comparison

The X17 analysis

2023 data taking conditions

Updated target region

- (*) Lithium phosphorus oxynitride (Li_{3-x}PO_{4-y}N_{x+y})
- 2 µm LiPON^(*)on 25 µm copper substrate (by PSI)
- 400 µm-thickness carbon fiber vacuum chamber to minimize multiple scattering
- Target-supporting and heat-dissipating copper structure attached to CW nose

- Copper ring for heat dissipation
- ---> main EPC source
- ---> thickness and EPC reduced by a factor 5

--> stability of gamma rate showed good heat dissipation capabilities of thinner ring at high proton currents

28-04-2023

2023 trigger conditions and rate estimate

- <u>CW energy</u> **1080 keV**
- ----> CW stable
 - <u>CW current</u> **10 μA**

gamma rate stable, no degradation of the target

- <u>Cobra field</u> 0.15B scaling
- samples taken at 0.16B and 0.17B: no evidence of improvement
- <u>Trigger</u> CDCH 18&18 >60mV, TC >= 1

samples taken at lower and higher multip.: no evidence of improvement

Trigger rate estimate based on MC and 2023 gamma rate (at Icw = 6uA)

• <u>EPC18+15</u> + <u>Compton</u>:

60 kHz -> **23 Hz** in trigger 0.039% induce trigger

• <u>IPC18+15</u>:

60 kHz -> 190 IPC generated -> **12 Hz** trigger

BR 3.2e-3

6.5% induce trigger

to compare with

Quick checks of reconstruction

28-04-2023

#good hits

Gamma analysis

LiF target and intercalibration

LiPON spectrum and gamma rate

SPIN & PARITY

SPIN-1 PARITY-EVEN

SPIN-1 PARITY-EVEN

TYPE OF TRANSITION

- to be optimized based on **Be17.6** line
- trigger threshold at ~8 MeV

ENERGY

18.15 MeV

17.64 MeV

(other states not shown)

Pairs on disk: 2022 vs 2023

accounting for livetime drop at 9uA **x 12 more pairs/s on disk** (wrt 2022) (x 10 was expected)

Gamma anisotropy

Gamma from p+Li known to be anisotropic

- As a check, anisotropy of gamma rate was measured by moving the BGO at
- -> 5 positrons along z at phi=0°: (-35 cm, -18 cm, 0 cm, 18 cm, 35 cm) -> 3 positions along phi at z = 0 cm (-25°, 0°, 25°)
- Brillance detector kept at fixed position and used as reference for normalization

MC vs data 2023

MC vs Data: CDCH hit study

-> 40 hits/event in pedestal-> 90 hits/event in signal

(consistent with 130 hits in total)

-> 10 hits/event in pedestal

-> 65 hits/event in signal

(consistent with 70 hits in total)

Data

40 hits/event in pedestal90 hits/event in signal

10 hits/event in pedestal65 hits/event in signal

• data have 30 more noise hits per event

MC noise will be generated in a way to reproduce the noise from data
 identify potential additional noisy channels in data

• data have 20/30 more signal hits per event

beam related background: X-ray? (test with copper only as target) secondary particles?

#hits

MC vs Data 2023: #pairs estimate

Trigger 18&18 (60mV) and 6 uA (Icw)

For data:

- ---> <u>scan of parameters</u> to tune X17 CDCH WF analysis
- fine tuning (+/- 1ns) for SPX and CYLDCH signal timing needs to be implemented for best reconstruction: will be done based on DOCA residuals

For MC:

- --> <u>artificial degradation</u> of track quality to match data quality: explain pair count discrepancy?
- MC will be updated in order to match data better (gain, noise): explain worse data quality?

Tracks not propagated to target

- 2023 XBoson run has been ongoing for 4 weeks in February in stable conditions
- trigger rate consistent in data and MC
- gamma analysis ongoing for **normalization** and **asymmetry study**
- factor 2 discrepancy in #pairs estimate between data and MC:
 noise hits, propagation and quality of tracks under investigation

Track propagation to z axis POCA

- instead of requesting propagation to target, we can request propagation to the closest point (POCA) to the z axis (~beam axis) -> called propagation ToVertex
- the POCA can be anywhere along z, so it doesn't allow to distinguish positrons and electrons

<u>%X = %triggered events with 1+ X-track</u>

<u>Trigger</u> 1 SPX hit 18&18 DCH hits	%track candidate	%ToVertex	% ToVertex ngh quality cut	% ToVertex ngh quality cut POCA z < 10cm	% pairs Ze+ X Ze- < 0
MC IPC18	93 %	90 %	73 %	60 %	1.4 %
MC EPC18	91 %	89 %	69 %	58 %	0.6 %
DATA2023*	88 %	84 %	75 %	50 %	0.6 %

* 60:40 IPC:EPC expected mix

track to vertex ~consistent in data and MC

Track propagation to z axis POCA

- instead of requesting propagation to target, we can request propagation to the closest point (POCA) to the z axis (~beam axis) -> called propagation ToVertex
- the POCA can be anywhere along z, so it doesn't allow to distinguish positrons and electrons

<u>%X = %triggered events with 1+ X-track</u>

<u>Trigger</u> 1 SPX hit 18&18 DCH hits	%track candidate	%ToVertex	% ToVertex ngh quality cut	% ToVertex ngh quality cut POCA z < 10cm	%pairs _{Ze+} X Ze- < 0
MC IPC18	93 %	90 %	73 %	60 %	1.4 %
MC EPC18	91 %	89 %	69 %	58 %	0.6 %
DATA2023*	88 %	84 %	75 %	50 %	0.6 %

* 60:40 IPC:EPC expected mix

- track to vertex ~consistent in data and MC
- clear drop from MC when requesting POCA to have: -10cm< z <10cm</p>
- part of drop due to lower quality tracks in MC

Track propagation to z axis POCA

- instead of requesting propagation to target, we can request propagation to the closest point (POCA) to the z axis (~beam axis) -> called propagation ToVertex
- the POCA can be anywhere along z, so it doesn't allow to distinguish positrons and electrons

<u>%X = %triggered events with 1+ X-track</u>

<u>Trigger</u> 1 SPX hit 18&18 DCH hits	%track candidate	%ToVertex	% ToVertex ngh quality cut	%ToVertex ngh quality cut POCA z < 10cm	% pairs _{Ze+} X Ze- < 0
MC IPC18	93 %	90 %	73 %	60 %	1.4 %
MC EPC18	91 %	89 %	69 %	58 %	0.6 %
DATA2023*	88 %	84 %	75 %	50 %	0.6 %
DATA2023*	88 %	84 %	75 %	50 %	0.6 %

* 60:40 IPC:EPC expected mix

- track to vertex ~consistent in data and MC
- clear drop from MC when requesting POCA to have: -10cm< z <10cm</p>
- part of drop due to lower quality tracks in MC
 - issue with material in target region? removed from reco but no strong effect

Track candidate and tracks

<u>Trigger</u> 1 SPX hit 18&18 DCH hits	#events triggered	#events with 1+track candidate	%events with 1+track candidate	#events with 1+track ToTarget	%events with 1+track ToTarget
MC IPC18	13894	12 906	93 %	9 530 (6267+5578-2315)	69 %
MC EPC18	306	279	91 %	155 (88+76-9)	51 %
DATA2023	50 748	46 057	91 %	22 179 (7697+17753-3271)	44 %

track candidates number consistent in data and MC

clear drop from MC when requesting propagation to target

Tracks not propagated to target

ITN meeting