Gruppo JLab12/ISS vs Attività

Attività in corso

- Analisi Esperimenti
 - **Ipernuclei**: completamento analisi Be (\Rightarrow Guido)
 - **Transversity @ 6GeV**: Short paper su SSA di π su n in circolazione nella collaborazione di sala A per sottomissione a PRL
- Preparazione Esperimenti:
 - Esperimento su Sezione d'urto Ipernucleare
 - GEP5
- Proposta Esperimento: SIDIS
 - PAC37 conditionally approved; verrà ripresentato in PAC38
- Apparati: Tracker per SBS:
 - □ Piani di silicio (\Rightarrow Franco Meddi)
 - Sviluppo Tracciatore GEM
 - Supporto ad Olympus
- Contributo a sviluppo RICH-CLAS12

oth JLab12 Coll. / ISS Activity

Transversity @ 6 GeV

Structure of the Nucleon

$$S_3 = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \underbrace{\Delta G}_{\sim 0} + \underbrace{L_q + L_G}_{?}$$

 $\Delta\Sigma$: quark spin fraction ΔG : gluon spin fraction $L_q + L_G$: angular momentum

SIDIS: Transverse Pol. Target / Long. Pol. Beam **Separation of TMDs** Separate different effects through angular dependence $A_{UT}(\phi_h^l, \phi_S^l) = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$ Collins asymmetry: P., $A_{UT}^{Collins} \propto \left\langle \sin(\varphi_h + \varphi_s) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$ Sivers asymmetry: $A_{UT}^{Sivers} \propto \left\langle \sin(\varphi_h - \varphi_s) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$ "Pretzelosity": $A_{UT}^{\text{Pretzelosity}} \propto \left\langle \sin(3\varphi_h - \varphi_s) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$ • **Double-spin asymmetry:** $A_{LT}^{\cos(\varphi_h - \varphi_s)} \propto \langle \cos(\varphi_h - \varphi_s) \rangle_{TT} \propto g_{1T} \otimes D_1$ Jeffe

From: Vincent Sulkosky (2011 Jlab User Group Meeting)

Transversity on neutron: Hall A experimental setup

- Beam e-: 5.9 GeV, 15 mA
- Neutron Target:
 - High pressure polarized ³He pol. 65%, 50 mg/cm² x 40 cm
- ≻Luminosity: 10³⁶/s/cm²
- Electron Arm (BigBite):
 - E'=0.7÷2.2 GeV, ϑ=30°, ΔΩ=64 msr
- Hadron Arm (HRS Left): $P_h = 2.35 \text{ GeV/c} \pm 5\%,$ $\vartheta = 30^\circ, \Delta\Omega = 6 \text{ msr, p/K ID}$
- Kinematic region:
 - $\begin{array}{l} \langle Q^2 \rangle \thicksim 2.2 \; GeV^2, \\ x \thicksim 0.13 \dot{\div} 0.45, \langle z \rangle \thicksim 0.5 \end{array}$

Transversity 6 GeV / Results

Transversity @ 8.8 e 11 GeV (proposal)

6th JLab12 Coll. / ISS Activity

SIDIS: Experimental Setup

21 Apr 2010 / DIS10 / Florence

E. Cisbani: n SSA @ JLab/Hall A

SIDIS proposal

- Estensione a 8.8 e 11 GeV dell'esperimento Transversity@6GeV con l'uso di SBS+BB
- Riproposta al PAC di Gennaio con varie migliorie:
 - Cross check stima accuratezze statistiche
 - Revisione modello Scopetta (in collaborazione con Scopetta, Salmé e Del Dotto \Rightarrow Tesi di laurea)
 - MC del RICH

Approvata con condizione (?)

Verrà riproposta al nuovo PAC con modello SBS e BB più realistico, rianalisi delle accuratezze (MC usato per Transversity a 6 GeV) e nuovi plot di impatto. (Xiaodong Jiang supporta l'impresa)

Anno Accademico 2010-2011

Impact Plots for SIDIS Proposal @ PAC38

6th JLab12 Coll.

SSI

09 Jun 2011 -

Rome

2012

Last HallA Experiments @ 6 GeV

	Exp.	Hypernuclei	Form Factors	Structure Function, PDF/TMD GPD	
	g2p			$\vec{e} + \vec{P} \rightarrow e' + X$ (low Q ² <1.3 GeV ²)	New septa
	Proton FF: GE/GM		Pol. Trans + DSA at low Q2 < 0.7 -> Gep/GMp -> Implication on DVCS and PVES		NH3 pol. target, New septa
	Hypernuclei	On 16O, cross section vs angle		1.10	
Xg2	0.02	Proton			
		Deuteron		0.95 UEDEX A Recoil Part DSA Part Expected Mainz uncer. (1%)	
	0.02 0	.05 0.10 0.20 0.50 1.00 X		0.2 0.4 √Q²[G	ieV]

Ipernuclei (esperimento previsto per fine 2012, al momento cancellato)

6th JLab12 Coll. / ISS Activity

E-07-012 - The Angular Dependence of ${}^{16}O(e,e'K){}^{16}N_{\Lambda}$ and ${}^{1}H(e,e'K)\Lambda$

Region not covered by existing photo- and electroproduction data CLAS, SAPHIR, and LEPS

The ratio of the hypernuclear and elementary cross section measured at the same kinematics is almost model independent at very forward kaon scattering angles

These data and, especially, the ratio of HN to the elementary cross section will give:

- new valuable information on hypernuclear structure (including spin assignment of produced hypernuclear states), and reaction mechanisms
- the modification of the dynamics of the (e,e'K⁺) process in the nuclear medium.

Parasitic test for E-08-012 Study of Light Hypernuclei by Spectroscopy of Two Body Weak Decay Pions 2-B: ${}^{A}_{A}Z \rightarrow {}^{A}(Z + 1) + \pi^{-1}$

0 Giugno 2010

2Body Pion Decay + Hypernuclear Exp.

Experiment

09 Jun 2011

1 6

2013 ed oltre (12 GeV era)

6th JLab12 Coll. / ISS Activity

HallA Experiments @ 12 GeV

Exp.	Short Range Correlation	Form Factors	Structure Function, PDF/TMD GPD	PVES (beyond SM)	
Inclusive 3H, 3He	σ(³ He)-σ(³ H) 2N, 3N Isospin dep.				HRS
GMP, GEP/GMP (GEP5), GMN		σ _{elastic} Pol transfer Double pol.			HRS, SBS&BB SBS&BB⊃GEM
Tritium			DIS off 3H 3He -> F2n/F2p		BB&HRS (maybe SBS)
A1n			DIS of 3He -> A1n \sim (g1+ γ g2)		HRS&BB⊃GEM
SOLID-3He			SIDIS / π SSA on N (3D Sivers + Transversity)		Dedicated Solenoid
SIDIS			SIDIS / π + K SSA on N (2D Sivers + Transversity)		SBS&BB⊃GEM
DVCS			Exclusive reaction on H -> GPD		HRS & Dedicated detector
Moller				$\vec{e}^-e^- \rightarrow e^-e^- \Rightarrow$ sin ² /(ϑ_W) (0.1 %)	Dedicated Detector
SOLID-PVDIS				A _{PV} (0.5%), sin²/(ϑ _w) (0.6%)	Dedicated Solenoid

Fattori di Forma

Fattori di forma del protone

Misura ad alto Q² (15 GeV²) con tecnica del trasferimento di polarizzazione in diffusione elastica e+p. Test per molti modelli fenomenologici. Permette di studiare la regione di transizione tra la descrizione non- e perturbativa della QCD. 23/03/2010 Lecce

Beyond the Born approximation: 2γ effect ...

Projected Results for OLYMPUS

Data from 1960's

Many theoretical predictions with little constraint

OLYMPUS: E= 2 GeV <1% projected uncertainties 500h @ 2x10³³ / cm²s

to be run in 2012

09 Jun 2011 - Rome

Apparati per i 12 GeV (Tracker per SBS)

SuperBigbite Spectrometer in Hall A

Divisione dei compiti per GEM

- Catania:
 - Design Meccanica + Analisi Elementi Finiti
 - Assemblaggio camere + Caratterizzazione
 - Analisi test
- Bari/Lecce
 - Sistema di gas + contributo MC
- Genova
 - Elettronica
- ISS
 - Coordinamento
 - Progettazione
 - Prototipazione
 - Supporto produzione + caratterizzazione
 - Monte Carlo Geant4

Tracciatore GEM, attività

- Prototipo elettronica + firmware (GE/Paolo Musico)
- Test DESY/July 2010 (nuova elettronica)
- Primo prototipo 40x50 cm2
- Test DESY/Nov2010 (nuova elettronica + prototipo)
- Sviluppo Montecarlo e Simulatore GEM
- Finalizzazione design in corso (meccanica, gas, firmware)
- Supporto Olympus (installazione in corso)
- Test in campo magnetico (CERN/June 2011)
- Procurement Materiale 3 (4) camere GEM
- Realizzazione Camere (70%) / Caratterizzazione
- Caratterizzazione e Tuning Elettronica in Olympus

Verrà utilizzato nel primo esperimento a 12 GeV (A1n in the valence region) nello spettrometro BigBite

Assembling the first 40x50 cm2 module

Stretching

Gluing the next frame with spacers

Electronics Components

- Use analog readout APV25 chips
- Paolo MusicolGE 2 active components: Front-End card and VME64x custom module
- Copper cables between front-end and VME

Ri-utilizzata nelle GEM di Olympus Utilizzata nei back tracker di SBS Richiesta da 4 gruppi cinesi per sviluppi in SOLID (ed altro)

Front End Card (Proto 1 – basically final) $GEM \Rightarrow FEC \Rightarrow MPD \Rightarrow DAQ$

Analog Output

Digital Input + Power supply

Analog out + Digital Input + Power supply

MultiPurposeDigitizer v1

- VME64x controller hosts the digitization of the analog signals coming from the front-end card.
- It handles all control signals required by the front end cards (up to 16 FE)
- Compliant to the JLab/12 VME64x
 VITA 41 (VXS) standard
- We intend to make it accessible by standard VME/32 as well
- 2 HDMI-type A: digital lines + 2 analog lines (compatible with SRS hybrids connector)
- 2 HDMI-type B: 16 analog lines
- Added delay line for clock-convert phase fine tuning (DELAY25 from CERN)

Beam test @ DESY (EUDET support)

Beam test @ DESY (EUDET support)

- Fully equiped GEM module
- 18 front-end cards
- 2304 channels
- (front end cards on the other side)
- 7 independente HV levels

2-6 GeV low intensity electron beam / silicon tracker available

Data taking: 28/Nov-3/Dec 2010

Beam test @ DESY (EUDET support)

Large improvement from July/2010

MonteCarlo + Digitizzazione + Tracciamento

Ξ^{0.08}

σ_v vs background

Background [%]

09 Jun 2011 - Rome

Flessibilità del progetto GEM

Implementazione in Olympus

Previsione attività 2012

- Completamento Produzione GEM (30%)
- Supporto Prototipazione RICH CLAS12
- Ultimi esperimenti 6 GeV (ipernuclei ?)
- Presa dati Olympus (estate 2012),
 - Tra l'altro importante banco di prova per GEM electronics

Previsione Spesa 2012 / ISS

- Missioni Interne: 5-7 keuro
- Missioni Estere: 25 keuro
- Consumabile: 5-10 keuro
- Costruzione Apparati (xGEM): 25-30 keuro
- Produzione GEM (tutte le sezioni):
 - \sim 120 keuro (30% camere GEM)

Standard Model Test and more

