Test of Multi-Anode PMTs fro the RICH

Main goal of the tests:

 characterization of the MA-PMT using a laser beam pixel-to-pixel uniformity uniformity within 1 pixel

- study single photoelectron response of MA-PMTs

Multi-Anode PMT

	H8500C		H8500C-03
window	borosilicate	9	UV glass
ange	300-650 nn	า	185-650 nm
peak		400 nm	
otal area	•	49x49	
N. pixel	:	8x8	
oixel area		5.2x5.2	
backing fra	ac.	89%	
gain		1.5 10^6	

WAVELENGTH (nm)

R8900-00-M15 R8900-100-M16

	R8900-00-M	16	R8900-100-M16
window	borosilicate glass		
range	300-650 nm		300-650 nm
peak	420 nm		350 nm
total area	26	5.2x26.2	
N. pixel	4)	‹4	
pixel area	~[5.8x5.8	
packing fra	ac. 80)%	
gain	10	0^6	

<u>Laser</u>

UV-VIS Neutral Density filters

λ=200-700 nm

optical density	transmission
0.5	32%
1.0	10%
2.0	1.0%
3.0	0.1%

The fiber head can be remotely moved in (x,y) to scan the PMT surface DAQ rate is driven by the PC (MAX ~5 kHz, but can be varied)

Thanks to M. Hock, R. Montgomery (Glasgow)

Pedestal measurements

Pedestal measurements: stability

High stability over a week of measurements

Run number

Pedestal measurements: stability

variation is 1 QDC channel (~0.1 pC)

Run number

First PMT scan

red laser, intensity 50% HV=-800V scan step 6.08 mm

gain relative to the best pixel

Up to factor ~2 pixel-to-pixel variation

Single p.e. measurements

Laser conditions:

- blue light
- tune (intensity) 25%
- 4 filters with OD=6.5, transmission~3 10⁻⁷
- fixed position, illumination of best pixel

DAQ rate 100Hz

Measurements vs HV

<u>HV = 1125 V</u>

Fit with pedestal (gaussian) plus contributions up to 4 p.e (gaussians) $\sigma(\text{ped}) = 0.4$ p(n) = ped + n(peak(1) - ped) $\sigma(n) = \sqrt{n} \sigma(1)$

<u>HV = 1075 V</u>

Fit with pedestal (gaussian) plus contributions up to 4 p.e (gaussians) $\sigma(\text{ped}) = 0.4$ p(n) = ped + n(peak(1) - ped) $\sigma(n) = \sqrt{n} \sigma(1)$

<u>HV = 950 V</u>

Fit with pedestal (gaussian) plus contributions up to 4 p.e (gaussians) $\sigma(\text{ped}) = 0.4$ p(n) = ped + n(peak(1) - ped) $\sigma(n) = \sqrt{n} \sigma(1)$

Single p.e. vs HV

Photon flux calculation

The number of incident photons can be calculated using the Poisson distribution

Probability of having **k** p.e. with **m** incident photons:

$$P_m(k) = \frac{m^k e^{-m}}{k!}$$

The distribution of the number of event with 0,1,2,... p.e. is fitted with the Poisson distribution leaving m as free parameter

m=1.88 ± 0.01

<u>m must be (roughly)</u> independent from the HV

better errors calculation needed

Number of incident photons

Conclusion

- We have a set-up for testing Multi-anode PMT with laser light
- Using standard CAEN electronics, the system is very stable, with very low noise
- A statistical procedure to study single photoelectron measurement has been established
- First results show that we are able to see the single photoelectron peak with Hamamatsu H8500 PMTs
- Good results using the best pixel, now we have to look at average pixel
- Next step we'll be study of Hamamatsu R8900