Using NGINX Iin Grid and
Cloud middleware

Laura Cappelli

With the contribution of the CNAF-SD team
Federica Agostini, Francesco Giacomini, Roberta Miccoli, Enrico Vianello

28 April 2023

Outline CNFN

The backstory of NGINX

NGINX behavior: architecture and processes

Configuration files
* Serving static content
 Run NGINX with some examples

Using NGINX as reverse proxy
NGINX modules

* The ngx_http_voms _module

Scripting

Other feature: caching, TLS termination, load balancing & health check, TCP/UDP stream
* A use-case: the WLCG StoRM Tape REST APl reverse proxy

CNAF-SD - Laura Cappelli 28 April 2023

Backstory @

NGINX is a free and open-source software (FreeBSD License) used as:
* HTTP server
 HTTP, mail and generic TCP/UDP proxy server

Written by Igor Sysoev and released in 2004
* The codebase was written from scratch in C and uses its own libraries

* |t has been ported to many architectures and operating systems (Linux, FreeBSD, Solaris, Mac OS X,
AlIX and Microsoft Windows)

The NGINX company was founded in 2011

* |t provides NGINX Plus paid software and support for the open-source version

* In March 2019, the company was acquired by F5 for $670 million

According to Netcraft, NGINX served or proxied 21.37% busiest sites in March 2023,
overtook Apache for the first time

CNAF-SD - Laura Cappelli 28 April 2023

https://news.netcraft.com/archives/2023/03/23/march-2023-web-server-survey.html

The C10k problem CNFN

* The C10k problem was coined in 1999 by software engineer Dan Kegel
* Problem of optimizing network sockets to handle 10°000 clients at the same time

 Example: a simple Apache-based web server which serves a 100 KB web page
* A fraction of a second to generate or retrieve the page
* 10 seconds to transmit the page to a client with 10 KB/s bandwidth before freeing the connection
e 1000 simultaneous connections with 1 MB of extra memory each: about 1 GB of extra memory

devoted to serving just 1000 clients 100 KB of content
e To provide high levels of performance and concurrency, a website should be based on:
e Efficient hardware, network capacity, application and data storage architectures

 The web server should be able to scale better than linearly the memory and the CPU usage with the
growing number of simultaneous connections and requests per second

 NGINX was created to solve the C10k problem

CNAF-SD - Laura Cappelli 28 April 2023

The beginning of NGINX CNFR

* From the beginning, NGINX was focused on:
* High performance & concurrency
* Low memory usage
* Load balancing
* Caching

e Base principles of NGINX:

 NGINX doesn’t spawn new processes or threads for each request because it is computational
expensive (requires a new runtime environment and execution context, heap and stack memory
allocation, ...)

* |tis based on the event-driven approach with a modular, asynchronous, single-threaded and non-
blocking architecture

e Connections are processed in a highly efficient run-loop in a limited number of single-threaded
processes called workers

* Within each worker nginx can handle many thousands of concurrent connections and requests per second
with typical hardware

* Even as load increases, memory and CPU usage remain manageable

CNAF-SD - Laura Cappelli 28 April 2023

NGINX Architecture @

* NGINX has a limited number of single-
threaded processes:

MASTER PROCESS e A master process

* Many worker processes as the core number

* The cache manager and the cache loader

Child Processes

* The processes can communicate using
SR e shared memory for:

e Shared cache data

e Session persistence data

* Other shared resources

CM CL w W w

Cache Manager Cache Loader Worker processes handle HTTP
and other network traffic

CNAF-SD - Laura Cappelli 28 April 2023

NGINX processes d\'?'\'

* The master process run as root user, and it is responsible for:
» Reading and validating configuration

Creating, binding and closing sockets

Starting, terminating and maintaining the other processes

Perform online reconfigurations and upgrades

Compiling embedded scripts

* The cache loader process runs at startup:
e |oads the disk-based cache into in-memory database with cache metadata
* Updates the relevant entries in shared memory
* EXits

* The cache manager process runs periodically and prunes entries from the disk caches
depending on expiration and invalidation

CNAF-SD - Laura Cappelli 28 April 2023

The worker processes CNFR

* The worker processes do the work
independently from all the other
processes

* Handle multiple network connections g it st ki i

* Read and write content to disk ----

 Communicate with upstream servers FastCGl, uWSGl. SCGl,

Auxiliary threads for blocking operations memcached gateway
(e.g. disk 1/0)

* Key principle: to be as non-blocking I I
as possible s R

* Uses heavily asynchronous tasks and dik cache fog o disk and syslog

* Arun-loop is the core of the worker
process

* Waiting for events on the listen sockets

e Events are initiated by new incoming
connections that are assigned to a state
machine (eg: the HTTP state machine)

CNAF-SD - Laura Cappelli 28 April 2023

The HTTP state machine

INFN

CNAF

INTERNET REQUESTS

Read Request Headers
SSL and SPDY decrypt encrypted traffic

(Apply keepalive management and
bandwidth shaping to all chient traffic)

Identify
Configuration Block
Request matching and rewriting

Response Filters Apply Rate Limits
gzip, SS1, headers, Rate and concurrency
image_filter, sub, etc limiting

Perform Authentication
Internal and external
access control

Generate Content
Generate response locally, or
proxy/gateway 1o an upstream service

Upstream
HTTP, HTTPS, FastCGI, uWSGl, SCGI, memcached

CNAF-SD - Laura Cappelli

 The state machine is the set of instructions that tell

how to process a request

* Most web servers use a similar state machine, the
difference lies in the implementation

Most web application platforms use blocking (waiting) I/O

Listen Sockets (port 80, 443, etc)

El E E

Wait for an event (epoll or kqueue)

accept E] new connection socket B

read B wait until request is read
write wait until response is written
wait B wait on KeepAlive connection

O ermor...

close B
Each worker can only process one active connection at a time

28 April 2023

NGINX uses a Non-Blocking “Event-Driven” architecture

Listen Sockets & Connection Sockets
El El E]
e B B K B K B K

Wait for an event (epoll or kqueue)

Event on Listen Socket: Event on Connection Socket:

accept El new B data in read buffer? read B
set B to be non-blocking space in write buffer? write &

error or timeout? close B
& remove B from socket list

add B to the socket list

An NGINX worker can process hundreds of thousands
of active connections at the same time

NGINX configuration CNFN

* The configuration is kept in a few text files
e Typicallyin /usr/local/etc/nginxor /etc/nginx folders
* The main configuration file is called nginx.conf
e Parts of the configuration can be put in separate files (typically in the /etc/nginx/conf.d folder)
which can be included in the main one
 When NGINX is started, the configuration files are read and verified by the master process
* A compiled form of the configuration is passed to the worker processes as they are created

* Configuration structures are automatically shared by the usual virtual memory management
mechanisms

* The configuration is composed by:

» Simple directives: name and parameters separated by spaces and ends with a semicolon
 Complex directives or context: set of directives inside braces ({})

CNAF-SD - Laura Cappelli 28 April 2023

The standard version of nginx.conf INFN

~ CNAF

user nginx;
worker processes auto;

Main context

Global context error log /var/log/nginx/error.log notice;

pid /var/run/nginx.pid;

events {

Event context

worker_connections 1024;

Workers configuration }
http {
include /etc/nginx/mime. types;
default type application/octet-stream;
log format main 'Sremote addr - Sremote user [S$time local] "Srequest™ '
'$Sstatus $body bytes sent "Shttp referer" '
HTTP context '"Shttp user agent" "Shttp x forwarded for"';
Manage HTTP/HTTPS access log /var/log/nginx/access.log main;
traffic
sendfile on;

keepalive timeout 65;

include /etc/nginx/conf.d/*.conf;

CNAF-SD - Laura Cappelli 28 April 2023

Serving static content INFN

~ CNAF

The default.conf filein the conf . d folder contains the following code:

http {
server {
listen 80;
server name localhost;
location / {
root /usr/share/nginx/html;
Server context index index.html index.htm;
Server configuration } Welcome to nginx!
error page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html; - 1
} Welcome to nginx!
} If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.
}

For online documentation and c.uppnrt pleat. refer to nginx.org.
Commercial support is available at n 0N

Thank you for using nginx.

CNAF-SD - Laura Cappelli 28 April 2023

Run NGINX INFN

~ CNAF

* The NGINX execution command is: nginx

 The possible options are:
nginx -help

nginx version: nginx/1.24.0

Usage: nginx [-?hvVtTqg] [-s signal] [-p prefix]
[-e filename] [-c filename] [-g directives]
Options:
-?,-h : this help
-v : show version and exit
-V : show version and configure options then exit
-t : test configuration and exit
-T : test configuration, dump it and exit
-q : suppress non-error messages during configuration testing
-s signal : send signal to a master process: stop, quit, reopen, reload
-p prefix : set prefix path (default: /etc/nginx/)
-e filename : set error log file (default: /var/log/nginx/error.log)
-c filename : set configuration file (default: /etc/nginx/nginx.conf)
—-g directives : set global directives out of configuration file

CNAF-SD - Laura Cappelli 28 April 2023

First simple exercises CINFR

e Prerequisite: install NGINX in an appropriate environment:

* You can find the documentation on the official website https://nginx.org/en/
e Atthislink thereis a repo with a ready-to-use Dockerfile

e Start NGINX with the standard configuration and show its welcome page

* Modify the configuration to print "Hello <your name>, welcome to nginx!" and reload
NGINX

e Send your name to NGINX as URL parameter and return the string "Hello <your name>1"
* Hint: use the NGINX variable Sarg <parameter-name> and the return directive
* You can add the new location /hello and query NGINX from command line:
curl http://localhost/hello?person=laura

CNAF-SD - Laura Cappelli 28 April 2023

https://nginx.org/en/
https://github.com/lauracappelli/seminario-nginx

Reverse proxy CNFN

* Areverse proxy is an application that sits in front of back-end applications and forwards
client requests to those applications

* Proxying is typically used to: ‘

* Distribute the load among servers ‘ \

* Hide the existence and the characteristics of origin servers
* Provide a single public IP address for multiple web-servers
listen on different ports in the same or on different machines /
* Cache content for reducing the load ‘
* Add access authentication and TLS encryption

@

 NGINX can be configured as reverse proxy for HTTP and other protocols
e E.g. TCP/UDP, FastCGl, uwsgi, SCGI, and memcached

CNAF-SD - Laura Cappelli 28 April 2023

Reverse proxy with NGINX CNFR

* To pass a request to an HTTP proxied server, the proxy pass directive is specified
inside a Llocation context

* Example: serving static content provided by a virtual server that listen on a different port
(that could be not directly reachable from the client side)

server
listen 80;
location / {
proxy pass http://localhost:8080;

}
}

server {
listen 8080;
root /tmp/simple-reverse-proxy;
location / {
index proxy-index.html;

}

CNAF-SD - Laura Cappelli 28 April 2023

http://localhost:8080

Passing Request Headers CNFR

* By default, in proxied requests NGINX eliminates the empty header fields and redefines
the following header fields:
* Host issettothe Sproxy host variable
* Connectionissettoclose

* To change the header field in proxied request, use the proxy set header directive

location /some/path/ {
proxy set header Host Shost;
proxy set header X-Real-IP Sremote addr;
proxy pass http://localhost:8000;

}

* To prevent a header field from being passed to the proxied server, set it to an empty
string

location /some/path/ {

proxy set header Accept-Encoding "";
proxy pass http://localhost:8000;

CNAF-SD - Laura Cappelli 28 April 2023

http://localhost:8000
http://localhost:8000

Reverse proxy —a more complex example ((INFN

~ CNAF

* Three servers running in three different containers behind a NGINX reverse proxy

* The servers are listening on the port 8080 and they are reachable from http://localhost/one,
http://localhost/two, http://localhost/three

e Some key points of the solution
 We use the upstream context to define each server

upstream service-one {
server service-one:8080; # this will point to the Docker Container DNS

)
* Inthe server context we define the locations with the proxy pass directives, for example:

location /one {
proxy set header X-Real-IP Sremote addr;
proxy set header X-Forwarded-For Sproxy add x forwarded for;
proxy set header Host $http host;
proxy set header X-Forwarded-Proto Sscheme;
proxy pass http://service-one;

}
* The solution is available here

CNAF-SD - Laura Cappelli 28 April 2023

http://localhost/one
http://localhost/two
http://localhost/three
http://service-one/
https://github.com/lauracappelli/seminario-nginx/tree/main/nginx-reverse-proxy-with-go

NGINX Modules CINFR

e NGINX is a collection of modules

* About one hundred are part of the core (http, stream, mail, ngx http proxy module, ...)
* There are thousands of 3rd party modules listed here (e.g. HTTP Healthcheck, HTTP echo, LDAP Auth)

e The modules can be:

e Static: the module is compiled into the NGINX server binary at compile time
./configure --prefix=/opt/nginx --add-module=/path/to/my-module
make install
 Dynamic: the module can be loaded or unloaded into NGIN at runtime based on configuration files
./configure --add-dynamic-module=/opt/source/ngx my module
make modules && make install
e To enable dynamic modules compatibility, compile the modules with the --with-compat option
* To load the module into the .conf files use the 1oad module directive

load module modules/ngx my module.so;

* |n both the cases, the NGINX source file is needed

CNAF-SD - Laura Cappelli 28 April 2023

https://www.nginx.com/resources/wiki/modules/

Thengx http voms module CNFR

* |tis possible developing a customized module
A good understanding of the NGINX internal architecture is required
* |t must be event-based and non-blocking

 We develops and maintains a module to integrate VOMS in NGINX (VOMS termination)
* |t enables client-side authentication based on X.509 proxy certificates augmented with the VOMS AC
obtained from a VOMS server

e The module defines a set of embedded variables, whose values are extracted from the first Attribute
Certificate found in the certificate chain

 Therepois on baltig: https://baltig.infn.it/storm2/ngx_http voms module

* Adockerimage with NGINX 1.24.0, the VOMS module and the independent HTTPG patch is available
on DockerHub at this link

CNAF-SD - Laura Cappelli 28 April 2023

http://Thhttps:/baltig.infn.it/storm2/ngx_http_voms_module
https://hub.docker.com/r/storm2/nginx-httpg-voms

Scripting CNFN

* |f your desired behavior is not possible to handle with the configuration file, the next
stop would be implementing it with scripting

» Scripting allows you to use existing and widely known languages to extend the functionality of NGINX

 NGINX supports 3 scripting methods:

1. Perl modules with the experimental ngx http perl module (the complete one is only for
NGINX Plus) used for less complex use-cases

2. Luacode with OpenResty, a web platform that integrates NGINX, LualJIT, Lua libraries and 3rd-party
NGINX modules

* It's a 3rd-party software with a modified version of the NGINX core and many dependencies

* You can write Lua code inside the .conf files

®
+ =
m @ vPEI\RESTY

NGINX ua + LualIT

CNAF-SD - Laura Cappelli 28 April 2023

http://openresty.org/en/

Scripting with njs CNFN

3. Using JavaScript with the nginscript module, or njs, developed and
maintained by NGINX

e |tis asubset of the JavaScript language with a compiler that produce an
executable when the NGINX process starts

* |tis theoretically faster than the others scripting methods

* All the JS code must be collocated in a sort of library files that you can
import and use in the NGINX configuration

e Some considerations based on our experience:
e JavaScriptis a better-known language than Lua
* The njs module is a small implementation of JS and it is still under development
e Theoretically, you can use JS modules and TypeScript to extend njs, but we are experimenting several
issues on their use
e There are several useful example on https://github.com/nginx/njs-examples

CNAF-SD - Laura Cappelli 28 April 2023

https://github.com/nginx/njs-examples

Caching (NN

* NGINX can cache all the content requested from the clients to the origin servers it serves

* |faclient requests a cached content, NGINX returns the content directly

* Only two directives are needed to enable basic caching:
* proxy cache path—setsthe cache path and configuration

* proxy cache —activates the cache configuration for a specific location
e Basic example

proxy cache path /path/to/cache levels=1:2 keys zone=my cache:10m max size=10g inactive=60m use temp path=off;
server
¥ ...
location / {
proxy cache my cache;
proxy pass http://my upstream;
}
}

* NGINX has other optional settings for fine-tuning the cache and its performance (e.g. set different
timing options, specify the cache key, splitting the cache across multiple hard drives, ...)

CNAF-SD - Laura Cappelli 28 April 2023

Configuring HTTPS servers - TLS termination (INFN

~ CNAF

e To configure an HTTPS server
* The ssl parameter must be enabled in the server block

 The locations of the server certificate (sent to every client that connects to the server) and the private key
files should be specified

server {
listen 443 ssl;
ssl on;
server name WWw.example.com;
ssl certificate certs/example.com.pem;
ssl certificate key certs/example.com.key;
ssl trusted certificate file; | ssl client certificate file;
ssl protocols TLSvl TLSvl.l TLSvl.2 TLSvl.3;

location / {
proxy pass http://127.0.0.1:8000;
}

}
* There are several directives to optimize the performance of the SSL operations, such as:
* Enable keepalive connections to send several requests via one connection
* reuse SSL session parameters to avoid SSL handshakes for parallel and subsequent connections.

CNAF-SD - Laura Cappelli 28 April 2023

http://www.example.com
http://127.0.0.1:8000

Load balancing & health check CNFR

NGINX can be used as load balancer to distribute traffic to several application servers and to
improve performance, scalability and reliability of web applications

Supported load balancing mechanism:
* Round-robin (default) — requests distributed in a round-robin fashion
* Least-connected — next request is assigned to the server with the least number of active connections
* Hash methods — a hash-function is used to determine what server should be selected for the next request;
the IP-hash is used when there is the need to tie a client to a particular application server

It is also possible to influence nginx load balancing algorithms by using server weights

http {
upstream myappl { server {
least conn; ip hash; listen 80;
server srvl.example.com; location / {
server srv2.example.com; proxy pass http://myappl;

server srv3.example.com; }
server srvéd.example.com weight=3; }

} }
Reverse proxy includes server health checks: if the response from a particular server fails with

an error, nginx will mark this server as failed, and will try to avoid selecting this server for
subsequent inbound requests for a while

CNAF-SD - Laura Cappelli 28 April 2023

Stream context CNFN

* NGINX can proxy and load balance not only HTTP or HTTPS protocols, but also TCP and
UDP traffic

* Instead of using ht tp context, you can use the stream block with one or more server context
e The listen directivein a stream-server context uses TCP as default protocol, otherwise you can
specify udp as parameter

stream {
server {

list 12345;
TCP server #ls =

}

server {
listen 53 udp;

UDP server \

CNAF-SD - Laura Cappelli 28 April 2023

Stream context — examples CNFN

* VOMS AA use the HTTPG protocol, so NGINX uses a stream block with a TCP server to
communicate with it

* A useful module in this context could be ngx stream ssl preread module

* It allows extracting information from the ClientHello message without terminating SSL/TLS

* E.g:selecting an upstream based on server name requested through Server Name Indication (SNI)
e TLS does not provide a mechanism for a client to tell a server the name of the server it is contacting

. It may be desirable for clients to provide this information to facilitate secure connections to servers that
host multiple 'virtual' servers at a single underlying network address

« To provide any of the server names, clients MAY include an extension of type "server_name" in the
ClientHello message

map $ssl preread server name S$name { upstream backend ({ server {
backend'example_com backend; server 192.168.0.1:12345,’ listen 12346;
default backend?2; server 192.168.0.2:12345; proxy pass Sname;

) } ssl preread on;
upstream backend?Z { }

server 192.168.0.3:12345;
server 192.168.0.4:12345;

DWW

}
CNAF-SD - Laura Cappelli 28 April 2023

The WLCG StoRM Tape REST AP CNFN

e The WLCG tape REST API allows clients to Q.
manage disk residency of tape stored files -
é policy
 Software structure: ‘ (REGO)
* NGINX reverse proxy o S the %
* OPA authorization server server data |
e StoRM Tape REST API (L2ony
* GEMSS . ./ N —
* Authentication is managed by NGINX and 7 9 =S
Su p p orts: 2 StoRM Tape Database E
e VVOMS certificates with the L - REST API J‘—" S
ngx http voms module - &
* JWT (experimental) — authn written by SD team, —— o EEMSS e

but we hope to use some 3rd-party libraries

28 April 2023

CNAF-SD - Laura Cappelli

StoRM Tape REST APl — NGINX config INFN

load module modules/ngx http voms module.so;

load module modules/ngx _http js module.so; —
[]
server { g
(policy ™)
location /api/vl { (REGO)
)
auth request ;
o . .)
proxy set header X-SSL-Client-S-Dn S$ssl client s dn; E-I ﬂ -
proxy set header x-voms fgans Svoms fgans; 1 OPA Authz ——
set _ _ ‘ —=
@ server data
pProxy pass http://storm-tape:8080; (JSON) ud
- 44—
} 6 —
location { NGINX —
; <+ |4 [A
internal; -
js_var Strusted issuers —> 9 W
"https://wlcg.cloud.cnaf.infn.it/,https://cms—auth.web.cern.ch/"; 5 Database
js content auth engine.authorize operation; StoRM Tape 9
Q
} ﬁr? | RESTAPI O
location /_opa { | Gl \
internal; a
N 4_._ Or GEMSS -—
| S—

proxy pass http://opa:8181/;

28 April 2023

CNAF-SD - Laura Cappelli

http://storm-tape:8080
https://wlcg.cloud.cnaf.infn.it/,https:/cms-auth.web.cern.ch/
http://opa:8181/

References CNFR

The Architecture of Open Source Applications (Vol 2), Chapter 14, A. Alexeev, Edited by
Brown & Greg Wilson

NGINX Documentation: http://nginx.org/en/

NGINX Blog: https://www.nginx.com/blog/

OpenResty: http://openresty.org/en/

VOMS module: https://baltig.infn.it/storm2/ngx_http voms module
StoRM Tape REST API: https://baltig.infn.it/cnafsd/storm-tape

StoRM Tape REST API testsuite: https://baltig.infn.it/cnafsd/storm-tape-ts

CNAF-SD - Laura Cappelli 28 April 2023

https://aosabook.org/en/v2/nginx.html
http://nginx.org/en/
https://www.nginx.com/blog/
http://openresty.org/en/
https://baltig.infn.it/storm2/ngx_http_voms_module
https://baltig.infn.it/cnafsd/storm-tape
https://baltig.infn.it/cnafsd/storm-tape-ts

	Diapositiva 1
	Diapositiva 2: Outline
	Diapositiva 3: Backstory
	Diapositiva 4: The C10k problem
	Diapositiva 5: The beginning of NGINX
	Diapositiva 6: NGINX Architecture
	Diapositiva 7: NGINX processes
	Diapositiva 8: The worker processes
	Diapositiva 9: The HTTP state machine
	Diapositiva 10: NGINX configuration
	Diapositiva 11: The standard version of nginx.conf
	Diapositiva 12: Serving static content
	Diapositiva 13: Run NGINX
	Diapositiva 14: First simple exercises
	Diapositiva 15: Reverse proxy
	Diapositiva 16: Reverse proxy with NGINX
	Diapositiva 17: Passing Request Headers
	Diapositiva 18: Reverse proxy – a more complex example
	Diapositiva 19: NGINX Modules
	Diapositiva 20: The ngx_http_voms_module
	Diapositiva 21: Scripting
	Diapositiva 22: Scripting with njs
	Diapositiva 23: Caching
	Diapositiva 24: Configuring HTTPS servers - TLS termination
	Diapositiva 25: Load balancing & health check
	Diapositiva 26: Stream context
	Diapositiva 27: Stream context – examples
	Diapositiva 28: The WLCG StoRM Tape REST API
	Diapositiva 29: StoRM Tape REST API – NGINX config
	Diapositiva 30: References

