
Using NGINX in Grid and 

Cloud middleware

28 April 2023

Laura Cappelli

With the contribution of the CNAF-SD team
Federica Agostini, Francesco Giacomini, Roberta Miccoli, Enrico Vianello



CNAF-SD - Laura Cappelli 28 April 2023 2

Outline

• The backstory of NGINX

• NGINX behavior: architecture and processes

• Configuration files
• Serving static content

• Run NGINX with some examples

• Using NGINX as reverse proxy

• NGINX modules
• The ngx_http_voms_module

• Scripting

• Other feature: caching, TLS termination, load balancing & health check, TCP/UDP stream

• A use-case: the WLCG StoRM Tape REST API reverse proxy



CNAF-SD - Laura Cappelli 28 April 2023 3

• NGINX is a free and open-source software (FreeBSD License) used as:
• HTTP server

• HTTP, mail and generic TCP/UDP proxy server

• Written by Igor Sysoev and released in 2004
• The codebase was written from scratch in C and uses its own libraries

• It has been ported to many architectures and operating systems (Linux, FreeBSD, Solaris, Mac OS X, 
AIX and Microsoft Windows)

• The NGINX company was founded in 2011
• It provides NGINX Plus paid software and support for the open-source version

• In March 2019, the company was acquired by F5 for $670 million

• According to Netcraft, NGINX served or proxied 21.37% busiest sites in March 2023, 
overtook Apache for the first time

Backstory

https://news.netcraft.com/archives/2023/03/23/march-2023-web-server-survey.html


CNAF-SD - Laura Cappelli 28 April 2023 4

The C10k problem

• The C10k problem was coined in 1999 by software engineer Dan Kegel
• Problem of optimizing network sockets to handle 10˙000 clients at the same time 

• Example: a simple Apache-based web server which serves a 100 KB web page
• A fraction of a second to generate or retrieve the page

• 10 seconds to transmit the page to a client with 10 KB/s bandwidth before freeing the connection

• 1˙000 simultaneous connections with 1 MB of extra memory each: about 1 GB of extra memory 
devoted to serving just 1000 clients 100 KB of content

• To provide high levels of performance and concurrency, a website should be based on:
• Efficient hardware, network capacity, application and data storage architectures

• The web server should be able to scale better than linearly the memory and the CPU usage with the 
growing number of simultaneous connections and requests per second

• NGINX was created to solve the C10k problem



CNAF-SD - Laura Cappelli 28 April 2023 5

The beginning of NGINX

• From the beginning, NGINX was focused on:
• High performance & concurrency 
• Low memory usage
• Load balancing
• Caching

• Base principles of NGINX:
• NGINX doesn’t spawn new processes or threads for each request because it is computational 

expensive (requires a new runtime environment and execution context, heap and stack memory 
allocation, …)

• It is based on the event-driven approach with a modular, asynchronous, single-threaded and non-
blocking architecture

• Connections are processed in a highly efficient run-loop in a limited number of single-threaded 
processes called workers
• Within each worker nginx can handle many thousands of concurrent connections and requests per second 

with typical hardware
• Even as load increases, memory and CPU usage remain manageable



CNAF-SD - Laura Cappelli 28 April 2023 6

NGINX Architecture

• NGINX has a limited number of single-
threaded processes:
• A master process

• Many worker processes as the core number

• The cache manager and the cache loader

• The processes can communicate using 
shared memory for:
• Shared cache data

• Session persistence data

• Other shared resources



CNAF-SD - Laura Cappelli 28 April 2023 7

NGINX processes

• The master process run as root user, and it is responsible for:
• Reading and validating configuration

• Creating, binding and closing sockets

• Starting, terminating and maintaining the other processes

• Perform online reconfigurations and upgrades

• Compiling embedded scripts

• The cache loader process runs at startup:
• Loads the disk-based cache into in-memory database with cache metadata

• Updates the relevant entries in shared memory

• Exits

• The cache manager process runs periodically and prunes entries from the disk caches 
depending on expiration and invalidation



CNAF-SD - Laura Cappelli 28 April 2023 8

The worker processes

• The worker processes do the work 
independently from all the other 
processes
• Handle multiple network connections
• Read and write content to disk
• Communicate with upstream servers

• Key principle: to be as non-blocking 
as possible
• Uses heavily asynchronous tasks
• A run-loop is the core of the worker 

process
• Waiting for events on the listen sockets
• Events are initiated by new incoming 

connections that are assigned to a state 
machine (eg: the HTTP state machine)



CNAF-SD - Laura Cappelli 28 April 2023 9

The HTTP state machine

• The state machine is the set of instructions that tell 
how to process a request
• Most web servers use a similar state machine, the 

difference lies in the implementation



CNAF-SD - Laura Cappelli 28 April 2023 10

NGINX configuration

• The configuration is kept in a few text files
• Typically in /usr/local/etc/nginx or /etc/nginx folders

• The main configuration file is called nginx.conf

• Parts of the configuration can be put in separate files (typically in the /etc/nginx/conf.d folder) 
which can be included in the main one

• When NGINX is started, the configuration files are read and verified by the master process
• A compiled form of the configuration is passed to the worker processes as they are created

• Configuration structures are automatically shared by the usual virtual memory management 
mechanisms

• The configuration is composed by:
• Simple directives: name and parameters separated by spaces and ends with a semicolon

• Complex directives or context: set of directives inside braces ({})



CNAF-SD - Laura Cappelli 28 April 2023 11

The standard version of nginx.conf

user nginx;

worker_processes auto;

error_log /var/log/nginx/error.log notice;

pid /var/run/nginx.pid;

events {

worker_connections 1024;

}

http {

include /etc/nginx/mime.types;

default_type application/octet-stream;

log_format main '$remote_addr - $remote_user [$time_local] "$request“ '

'$status $body_bytes_sent "$http_referer" '

'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

sendfile on;

keepalive_timeout 65;

include /etc/nginx/conf.d/*.conf;

}

Main context
Global context

Event context
Workers configuration

HTTP context
Manage HTTP/HTTPS 

traffic



CNAF-SD - Laura Cappelli 28 April 2023 12

The default.conf file in the conf.d folder contains the following code:
http {

...

server {

listen 80;

server_name localhost;

location / {

root /usr/share/nginx/html;

index index.html index.htm;

}

error_page 500 502 503 504 /50x.html;

location = /50x.html {

root /usr/share/nginx/html;

}

}

...

}

Serving static content

Server context
Server configuration



CNAF-SD - Laura Cappelli 28 April 2023 13

Run NGINX

• The NGINX execution command is: nginx
• The possible options are:

# nginx -help

nginx version: nginx/1.24.0

Usage: nginx [-?hvVtTq] [-s signal] [-p prefix]

[-e filename] [-c filename] [-g directives]

Options:

-?,-h : this help

-v : show version and exit

-V : show version and configure options then exit

-t : test configuration and exit

-T : test configuration, dump it and exit

-q : suppress non-error messages during configuration testing

-s signal : send signal to a master process: stop, quit, reopen, reload

-p prefix : set prefix path (default: /etc/nginx/)

-e filename : set error log file (default: /var/log/nginx/error.log)

-c filename : set configuration file (default: /etc/nginx/nginx.conf)

-g directives : set global directives out of configuration file



CNAF-SD - Laura Cappelli 28 April 2023 14

First simple exercises

• Prerequisite: install NGINX in an appropriate environment:

• You can find the documentation on the official website https://nginx.org/en/

• At this link there is a repo with a ready-to-use Dockerfile

• Start NGINX with the standard configuration and show its welcome page

• Modify the configuration to print "Hello <your name>, welcome to nginx!" and reload 

NGINX

• Send your name to NGINX as URL parameter and return the string "Hello <your name>!"

• Hint: use the NGINX variable $arg_<parameter-name> and the return directive

• You can add the new location /hello and query NGINX from command line:

curl http://localhost/hello?person=laura

https://nginx.org/en/
https://github.com/lauracappelli/seminario-nginx


CNAF-SD - Laura Cappelli 28 April 2023 15

Reverse proxy

• A reverse proxy is an application that sits in front of back-end applications and forwards 
client requests to those applications

• Proxying is typically used to:
• Distribute the load among servers

• Hide the existence and the characteristics of origin servers

• Provide a single public IP address for multiple web-servers

listen on different ports in the same or on different machines

• Cache content for reducing the load

• Add access authentication and TLS encryption

• NGINX can be configured as reverse proxy for HTTP and other protocols
• E.g. TCP/UDP, FastCGI, uwsgi, SCGI, and memcached



CNAF-SD - Laura Cappelli 28 April 2023 16

Reverse proxy with NGINX

• To pass a request to an HTTP proxied server, the proxy_pass directive is specified 
inside a location context

• Example: serving static content provided by a virtual server that listen on a different port 
(that could be not directly reachable from the client side)

server {

listen 80;

location / {

proxy_pass http://localhost:8080;

}

}

server {

listen 8080;

root /tmp/simple-reverse-proxy;

location / {

index proxy-index.html;

}

}

http://localhost:8080


CNAF-SD - Laura Cappelli 28 April 2023 17

Passing Request Headers

• By default, in proxied requests NGINX eliminates the empty header fields and redefines 
the following header fields:
• Host is set to the $proxy_host variable

• Connection is set to close

• To change the header field in proxied request, use the proxy_set_header directive
location /some/path/ {

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_pass http://localhost:8000;

}

• To prevent a header field from being passed to the proxied server, set it to an empty 
string

location /some/path/ {

proxy_set_header Accept-Encoding "";

proxy_pass http://localhost:8000;

}

http://localhost:8000
http://localhost:8000


CNAF-SD - Laura Cappelli 28 April 2023 18

Reverse proxy – a more complex example

• Three servers running in three different containers behind a NGINX reverse proxy
• The servers are listening on the port 8080 and they are reachable from http://localhost/one, 

http://localhost/two, http://localhost/three

• Some key points of the solution
• We use the upstream context to define each server

location /one {

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header Host $http_host;

proxy_set_header X-Forwarded-Proto $scheme;

proxy_pass http://service-one;

}

upstream service-one {

server service-one:8080; # this will point to the Docker Container DNS

}

• In the server context we define the locations with the proxy_pass directives, for example:

• The solution is available here

http://localhost/one
http://localhost/two
http://localhost/three
http://service-one/
https://github.com/lauracappelli/seminario-nginx/tree/main/nginx-reverse-proxy-with-go


CNAF-SD - Laura Cappelli 28 April 2023 19

NGINX Modules

• NGINX is a collection of modules
• About one hundred are part of the core (http, stream, mail, ngx_http_proxy_module, ...)

• There are thousands of 3rd party modules listed here (e.g. HTTP Healthcheck, HTTP echo, LDAP Auth)

• The modules can be:
• Static: the module is compiled into the NGINX server binary at compile time

./configure --prefix=/opt/nginx --add-module=/path/to/my-module

make install

• Dynamic: the module can be loaded or unloaded into NGIN at runtime based on configuration files
./configure --add-dynamic-module=/opt/source/ngx_my_module

make modules && make install

• To enable dynamic modules compatibility, compile the modules with the --with-compat option

• To load the module into the .conf files use the load_module directive

load_module modules/ngx_my_module.so;

• In both the cases, the NGINX source file is needed

https://www.nginx.com/resources/wiki/modules/


CNAF-SD - Laura Cappelli 28 April 2023 20

The ngx_http_voms_module

• It is possible developing a customized module
• A good understanding of the NGINX internal architecture is required

• It must be event-based and non-blocking

• We develops and maintains a module to integrate VOMS in NGINX (VOMS termination)
• It enables client-side authentication based on X.509 proxy certificates augmented with the VOMS AC 

obtained from a VOMS server

• The module defines a set of embedded variables, whose values are extracted from the first Attribute 
Certificate found in the certificate chain

• The repo is on baltig: https://baltig.infn.it/storm2/ngx_http_voms_module

• A docker image with NGINX 1.24.0, the VOMS module and the independent HTTPG patch is available 
on DockerHub at this link

http://Thhttps:/baltig.infn.it/storm2/ngx_http_voms_module
https://hub.docker.com/r/storm2/nginx-httpg-voms


CNAF-SD - Laura Cappelli 28 April 2023 21

Scripting

• If your desired behavior is not possible to handle with the configuration file, the next 
stop would be implementing it with scripting
• Scripting allows you to use existing and widely known languages to extend the functionality of NGINX

• NGINX supports 3 scripting methods:
1. Perl modules with the experimental ngx_http_perl_module (the complete one is only for 

NGINX Plus) used for less complex use-cases

2. Lua code with OpenResty, a web platform that integrates NGINX, LuaJIT, Lua libraries and 3rd-party 
NGINX modules
• It's a 3rd-party software with a modified version of the NGINX core and many dependencies

• You can write Lua code inside the .conf files

http://openresty.org/en/


CNAF-SD - Laura Cappelli 28 April 2023 22

Scripting with njs

3. Using JavaScript with the nginscript module, or njs, developed and 
maintained by NGINX

• It is a subset of the JavaScript language with a compiler that produce an 
executable when the NGINX process starts

• It is theoretically faster than the others scripting methods

• All the JS code must be collocated in a sort of library files that you can 
import and use in the NGINX configuration

• Some considerations based on our experience:
• JavaScript is a better-known language than Lua
• The njs module is a small implementation of JS and it is still under development
• Theoretically, you can use JS modules and TypeScript to extend njs, but we are experimenting several 

issues on their use
• There are several useful example on https://github.com/nginx/njs-examples

+

https://github.com/nginx/njs-examples


CNAF-SD - Laura Cappelli 28 April 2023 23

Caching

• NGINX can cache all the content requested from the clients to the origin servers it serves
• If a client requests a cached content, NGINX returns the content directly

• Only two directives are needed to enable basic caching:
• proxy_cache_path – sets the cache path and configuration

• proxy_cache – activates the cache configuration for a specific location

• Basic example
proxy_cache_path /path/to/cache levels=1:2 keys_zone=my_cache:10m max_size=10g inactive=60m use_temp_path=off;

server {

# ...

location / {

proxy_cache my_cache;

proxy_pass http://my_upstream;

}

}

• NGINX has other optional settings for fine-tuning the cache and its performance (e.g. set different 

timing options, specify the cache key, splitting the cache across multiple hard drives, …)



CNAF-SD - Laura Cappelli 28 April 2023 24

Configuring HTTPS servers - TLS termination

• To configure an HTTPS server
• The ssl parameter must be enabled in the server block
• The locations of the server certificate (sent to every client that connects to the server) and the private key 

files should be specified
server {

listen 443 ssl;

ssl on;

server_name www.example.com;

ssl_certificate certs/example.com.pem;

ssl_certificate_key certs/example.com.key;

ssl_trusted_certificate file; | ssl_client_certificate file;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3;

…

location / {

proxy_pass http://127.0.0.1:8000;

}

}

• There are several directives to optimize the performance of the SSL operations, such as:
• Enable keepalive connections to send several requests via one connection
• reuse SSL session parameters to avoid SSL handshakes for parallel and subsequent connections.

http://www.example.com
http://127.0.0.1:8000


CNAF-SD - Laura Cappelli 28 April 2023 25

Load balancing & health check

• NGINX can be used as load balancer to distribute traffic to several application servers and to 
improve performance, scalability and reliability of web applications

• Supported load balancing mechanism:
• Round-robin (default) – requests distributed in a round-robin fashion
• Least-connected – next request is assigned to the server with the least number of active connections
• Hash methods – a hash-function is used to determine what server should be selected for the next request; 

the IP-hash is used when there is the need to tie a client to a particular application server

• It is also possible to influence nginx load balancing algorithms by using server weights
http {

upstream myapp1 {

# least_conn; ip_hash;

server srv1.example.com;

server srv2.example.com;

server srv3.example.com;

# server srv4.example.com weight=3;

}

server {

listen 80;

location / {

proxy_pass http://myapp1;

}

}

}

• Reverse proxy includes server health checks: if the response from a particular server fails with 
an error, nginx will mark this server as failed, and will try to avoid selecting this server for 
subsequent inbound requests for a while



CNAF-SD - Laura Cappelli 28 April 2023 26

TCP server

UDP server

• NGINX can proxy and load balance not only HTTP or HTTPS protocols, but also TCP and 
UDP traffic
• Instead of using http context, you can use the stream block with one or more server context

• The listen directive in a stream-server context uses TCP as default protocol, otherwise you can 
specify udp as parameter

stream {

server {

listen 12345;

# ...

}

server {

listen 53 udp;

# ...

}

# ...

}

Stream context



CNAF-SD - Laura Cappelli 28 April 2023 27

Stream context – examples

• VOMS AA use the HTTPG protocol, so NGINX uses a stream block with a TCP server to 
communicate with it

• A useful module in this context could be ngx_stream_ssl_preread_module
• It allows extracting information from the ClientHello message without terminating SSL/TLS

• E.g: selecting an upstream based on server name requested through Server Name Indication (SNI)
• TLS does not provide a mechanism for a client to tell a server the name of the server it is contacting

• It may be desirable for clients to provide this information to facilitate secure connections to servers that 
host multiple 'virtual' servers at a single underlying network address

• To provide any of the server names, clients MAY include an extension of type "server_name" in the 
ClientHello message

map $ssl_preread_server_name $name { 

backend.example.com backend;

default backend2;

}

upstream backend {

server 192.168.0.1:12345;

server 192.168.0.2:12345;

}

upstream backend2 {

server 192.168.0.3:12345;

server 192.168.0.4:12345;

}

server { 

listen 12346; 

proxy_pass $name;

ssl_preread on;

}



CNAF-SD - Laura Cappelli 28 April 2023 28

The WLCG StoRM Tape REST API

• The WLCG tape REST API allows clients to 
manage disk residency of tape stored files

• Software structure:
• NGINX reverse proxy

• OPA authorization server

• StoRM Tape REST API

• GEMSS

• Authentication is managed by NGINX and 
supports:
• VOMS certificates with the 
ngx_http_voms_module

• JWT (experimental) – authn written by SD team, 
but we hope to use some 3rd-party libraries



CNAF-SD - Laura Cappelli 28 April 2023 29

StoRM Tape REST API – NGINX config

load_module modules/ngx_http_voms_module.so;

load_module modules/ngx_http_js_module.so;

…

server{

…

location /api/v1 {

auth_request /authz;

proxy_set_header X-SSL-Client-S-Dn $ssl_client_s_dn;

proxy_set_header x-voms_fqans $voms_fqans;

…

proxy_pass http://storm-tape:8080;

}

location /authz {

internal;

js_var $trusted_issuers

"https://wlcg.cloud.cnaf.infn.it/,https://cms-auth.web.cern.ch/";

js_content auth_engine.authorize_operation;

}

location /_opa {

internal;

…

proxy_pass http://opa:8181/;

}

}

http://storm-tape:8080
https://wlcg.cloud.cnaf.infn.it/,https:/cms-auth.web.cern.ch/
http://opa:8181/


CNAF-SD - Laura Cappelli 28 April 2023 30

References

• The Architecture of Open Source Applications (Vol 2), Chapter 14, A. Alexeev, Edited by 
Brown & Greg Wilson

• NGINX Documentation: http://nginx.org/en/

• NGINX Blog: https://www.nginx.com/blog/

• OpenResty: http://openresty.org/en/

• VOMS module: https://baltig.infn.it/storm2/ngx_http_voms_module

• StoRM Tape REST API: https://baltig.infn.it/cnafsd/storm-tape

• StoRM Tape REST API testsuite: https://baltig.infn.it/cnafsd/storm-tape-ts

https://aosabook.org/en/v2/nginx.html
http://nginx.org/en/
https://www.nginx.com/blog/
http://openresty.org/en/
https://baltig.infn.it/storm2/ngx_http_voms_module
https://baltig.infn.it/cnafsd/storm-tape
https://baltig.infn.it/cnafsd/storm-tape-ts

	Diapositiva 1
	Diapositiva 2: Outline
	Diapositiva 3: Backstory
	Diapositiva 4: The C10k problem
	Diapositiva 5: The beginning of NGINX
	Diapositiva 6: NGINX Architecture
	Diapositiva 7: NGINX processes
	Diapositiva 8: The worker processes
	Diapositiva 9: The HTTP state machine
	Diapositiva 10: NGINX configuration
	Diapositiva 11: The standard version of nginx.conf
	Diapositiva 12: Serving static content
	Diapositiva 13: Run NGINX
	Diapositiva 14: First simple exercises
	Diapositiva 15: Reverse proxy
	Diapositiva 16: Reverse proxy with NGINX
	Diapositiva 17: Passing Request Headers
	Diapositiva 18: Reverse proxy – a more complex example
	Diapositiva 19: NGINX Modules
	Diapositiva 20: The ngx_http_voms_module
	Diapositiva 21: Scripting
	Diapositiva 22: Scripting with njs
	Diapositiva 23: Caching
	Diapositiva 24: Configuring HTTPS servers  - TLS termination
	Diapositiva 25: Load balancing & health check
	Diapositiva 26: Stream context
	Diapositiva 27: Stream context – examples
	Diapositiva 28: The WLCG StoRM Tape REST API
	Diapositiva 29: StoRM Tape REST API – NGINX config
	Diapositiva 30: References

