Progress in understanding tidal disruption events

Key collaborators: Suvi Gezari, James Miller-Jones, Kate Alexander, Nicholas Stone, Robert Stein, Marek Kowalski, DJ Pasham, Andrew Mummery

Image credit: DESY

... using observations

Gravi-Gamma-Nu - Oct 4, 2023

Sjoert van Velzen, Leiden Observatory

Some (fundamental) questions

Are (most) black holes spinning?

Is accretion physics scale invariant?

> Black hole genesis in the early universe

Black hole mass measurements are challenging

BH sphere of influence

Effective radius ~ kpc

den Bosch (2016) van

Black hole mass measurements are challenging

BH sphere of influence

Effective radius ~ kpc

den Bosch (2016) van

Tidal disruption events (TDEs): A new tool to study black holes in *quiescent* galaxies

Artis impression Image credit: NASA, van Velzen et al. Simulation image: Guillochon et al.

Fundamental Questions

Are black holes spinning?

Is accretion physics scale invariant?

Black hole genesis in the early universe

TDE rate at high black hole mass

Radio + X-ray monitoring of TDEs

TDE rate in lowmass galaxies

<u>Challenges</u>

Are black holes spinning?

Is accretion physics scale invariant?

Black hole genesis in the early universe

Large TDE samples

TDE Emission mechanism

Emission mechanism + large samples

This talk: focus on thermal TDEs

7

van Velzen et al. (2016); ASASSN-14li (Holoien et al. 2016)

Part 1: Optical emission

8

van Velzen et al. (2016); ASASSN-14li (Holoien et al. 2016)

Summary of optical/UV emission

Information about:

- Density in photosphere
- BH mass
- BH mass, stellar mass

Data of PS-10jh Gezari et al. (2012, 2015); van Velzen et al. (2019)

Spectroscopic classification scheme established

van Velzen et al. (2021)

• TDE-H

- TDE-H+He (often incl. Bowen lines)
- TDE-He
- Building on earlier work: Arcavi et al. (2014); Blagorodnova et al. (2018); Leloudas et al. (2019)
- Origin of emission lines is debated, line width due to electron scattering

Black hole mass function

- 33 ZTF TDEs (uniform sample)
- Assumption: BH mass from velocity dispersion
- Single power-law down to: $M_{\rm BH} \approx 10^{5.5} M_{\odot}$
 - Not enough data to detect a low-mass turnover

Black hole mass function

- 33 ZTF TDEs (uniform sample)
- Assumption: BH mass from velocity dispersion
- Single power-law down to: $M_{\rm BH} \approx 10^{5.5} M_{\odot}$
 - Not enough data to detect a low-mass turnover

What's new? Featureless spectra

- H+He class is most common
- New class: featureless TDEs (Hammerstein+22; Yao+23)
 - Very rare and high-mass host galaxies
- Helps to solve origin of emission lines?

Figure based on van Velzen+21; updated with latest TDEs for this talk

Part 2: X-ray emission of thermal TDEs

van Velzen et al. (Science, 2016); ASASSN-14li (Holoien et al. 2016)

*however see: Steinberg & Stone (2022; arXiv:2206.10641)

Part 2: X-ray emission of thermal TDEs

van Velzen et al. (Science, 2016); ASASSN-14li (Holoien et al. 2016)

*however see: Steinberg & Stone (2022; arXiv:2206.10641)

What's new? X-ray QPEs! Quasi Periodic Eruptions

- Serendipitously discovered in 2019 (Miniutti+19)
- Rapid X-ray flares, recurring on ~hours
- Similar host galaxies to TDEs (Wevers+21)
- To date, 6 published, 3 with a detected prior X-ray (candidate) TDE
 - Probability ~10⁻⁹ for chance association of TDEs and QPEs (Quintin+23)

What's new? X-ray QPEs! Quasi Periodic Eruptions

Quintin et al. "Tormund's return" (2023; arXiv:2306.00438)

What's new? X-ray QPEs! Quasi Periodic Eruptions

Quintin et al. "Tormund's return" (2023; arXiv:2306.00438)

Part 3: radio emission of thermal TDEs

Part 3: radio emission of thermal TDEs

Single-zone synchrotron emission The "typical" case: outflows with 0.1c

AT2019dsg: Stein, van Velzen et al. (2021)

see Alexander, van Velzen et al. (2021) for a review

What's new? Late-time radio flares

What's new? Late-time radio flares

- Late-time radio flares \bullet (Horesh+21; Cendes+22)
 - Late-time accretion?
 - State change of accretion disk!

What's new? Late-time radio flares

- Late-time radio flares (Horesh+21; Cendes+22)
 - Late-time accretion?
 - State change of accretion disk!
- Rapid spectral changes (in AT2019azh; Goodwin+22)
 - Inhomogenous medium?
 - Jet geometry!

Part 4: Multi-messenger

• 3.6 sigma significance (based on dust echoes)

- 3.6 sigma significance (based on dust echoes)
- AT2019dsg: strongest dust echo in ZTF

- 3.6 sigma significance (based on dust echoes) lacksquare
- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF

- 3.6 sigma significance (based on dust echoes)
- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF
- All three neutrino associations:

- 3.6 sigma significance (based on dust echoes)
- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF
- All three neutrino associations: lacksquare
 - Detected in the radio (uncommon for AGN)

- 3.6 sigma significance (based on dust echoes)
- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF
- All three neutrino associations:
 - Detected in the radio (uncommon for AGN)
 - Detected in X-ray, with soft spectra (very uncommon for AGN)

- 3.6 sigma significance (based on dust echoes)
- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF
- All three neutrino associations:
 - Detected in the radio (uncommon for AGN)
 - Detected in X-ray, with soft spectra (very uncommon for AGN)
- Connection with NGC 1068?

Most nuclear transients are not TDEs

- Many "extreme" SMBH flares of unknown origin (e.g. Hinkle+22)
 - Fast and high amplitude (e.g., Graham+17; Frederick+20)
- (Recurring) TDEs in AGN?
 - Would require a significant TDE rate enhancement
- Link with neutrinos suggests a special state of the accretion disk?

Recap: summary of optical/UV emission

Accretion

 10^{-3}

Information about:

- Density in photosphere
- BH mass
- BH mass, stellar mass

Data of PS-10jh Gezari et al. (2012, 2015); van Velzen et al. (2019)

Let's find all the plateaus **Classical approach: late-time UV observations**

Let's find all the plateaus Breakthrough with optical photometry (ZTF)

Let's find all the plateaus Breakthrough with optical photometry (ZTF)

Plateau luminosity correlates with host galaxy mass

- Strongest correlation of all lightcurve properties
- Significance: $p = 2 \ 10^{-6} \sim 5\sigma$
- 0.30 dex scatter in massdirection
- Theory predicts plateau luminosity for a given black hole mass

43.5 ອີ ອີ ອີ ອີ $(\log_{10}$ 42.5 luminosity 42.0 NUV 41.5 Plateau 41.0

Excellent agreement

TDE peak luminosity correlates with plateau luminosity

Extending the M-sigma relation Using the peak luminosity

Spin constraints

Mummery, van Velzen (2023)

Summary Progress at all wavelengths

- * **X-ray:** new discoveries (QPEs), samples (eROSITA)
- * Radio: unexpected late-time flares
- * High-energy neutrinos
- * Optical: large samples
 - ✓ Almost 100 TDEs!
 - Clear correlations with host galaxy mass
 - ✓ Could soon resolve origin of optical emission
- * Connection to AGN flares remains unclear

<u>Questions and Requirements</u> Are black holes spinning?

Is accretion physics scale invariant?

Black hole genesis in early universe

Large TDE samples

TDE Emission mechanism

Emission mechanism + large samples

What is next?

1000

What is next?

What is next?

- More TDEs with Rubin Observatory: 10-1000 per year
- More neutrinos: KM3NET, IceCube (Gen2)
- More detections in (blind) radio surveys: VLASS, DSA-1000, ngVLA, SKA
- Optical/UV detections from space: Gaia, EUCLID, ULTRASAT, Roman
- More IR detections: ground based, JWST(!) and NEO surveyor

Disk model

Disk model

 10^{44} $(zH)^{10_{43}} = 014^{10_{43}}$ 10^{-2} $\boldsymbol{\mathcal{A}}$ $\nu L_{\nu} (erg/s), 10_{30}$ 10^{3} 10^{4}

Mummery, van Velzen (2023)

-1.5

-1.0

0.5

0.0

Host galaxies: preference for "green valley"

65% of TDEs in green valley compared to 10% of normal galaxies

Hammerstein et al. 2021

Similar to post-starburst preference

(Arcavi et al. 2014; French et al. 2016; Law-Smith et al. 2017; Graur et al. 2017)

Explaining the cosmic neutrino flux Particle acceleration in a super-Eddington accretion disk

- Puzzling facts:
 - About 10% of HE neutrinos from TDE-like flares
 - Normal AGN outshine TDEs by 2 orders of magnitude
 - For common particle acceleration, AGN should dominate the neutrino sky

Explaining the cosmic neutrino flux Particle acceleration in a super-Eddington accretion disk

- Puzzling facts:
 - About 10% of HE neutrinos from TDE-like flares
 - Normal AGN outshine TDEs by 2 orders of magnitude
 - For common particle acceleration, AGN should dominate the neutrino sky
- Solution:
 - Super-Eddington accretion: common for TDEs, uncommon for AGN

Explaining the cosmic neutrino flux Particle acceleration in a super-Eddington accretion disk

- Puzzling facts:
 - About 10% of HE neutrinos from TDE-like flares
 - Normal AGN outshine TDEs by 2 orders of magnitude
 - For common particle acceleration, AGN should dominate the neutrino sky
- Solution:
 - Super-Eddington accretion: common for TDEs, uncommon for AGN
- Supporting evidence:
 - NGC 1068 (IceCube hotspot) is the nearest super-Eddington AGN (!)

AT2019fdr (TDE?): another large dust echo - Reusch et al (arXiv:2111.09390)

