■UCL

Constraining mass of neutron star in compact binary with multi-messenger observations

Kaye Li¹ with Jane Long², Kinwah Wu¹, Albert Kong²

¹Mullard Space Science Laboratory, University College London ²Institute of Astronomy, National Tsing Hua University, Taiwan

6th Oct 2023 GSSI, L'Aquila, Italy

UCL

LISA mission

- Space-based mission
- Scheduled to launch in the early 2030s
- Three arms with length 3Gm

Concept of LISA (credit: ESA and NASA)

Compact millisecond pulsar binary:

- First system observed in 1988 with radio eclipse

(PSR1957+20) Fruchter, Stinebring and Taylor 1988

black widow system

(PSR J1311-3430, credit: NASA)

- Millisecond pulsar with low mass companion
- Ablation of the companion
- Compact orbit (P<24 h)
- Negligible accretion

UCL

Constraining EOS model with massive neutron star

UCL

Determining the inclination angle from gravitational wave

Mass-inclination degeneracy for gravitational wave

gbmcmc package; t Littenberg (https://github.com/tlittenberg/ldasoft)

Mass-inclination degeneracy for gravitational wave

gbmcmc package: t Littenberg (https://github.com/tlittenberg/ldasoft)

A handy relation with SNR

~200 systems, P_b : 10-30 min, d: 1-30 kpc, cosi: 0.1-0.9, $m_{ns} = 2.0 M_{\odot}$, $m_c = 0.1 M_{\odot}$

Breaking the mass-inclination angle degeneracy with multi-messenger method

2D confidence interval + g(m) + f(m)

(Long, Li, Wu, Kong 2023 submitted)

Other injected value: $m_{ns} = 2.0 M_{\odot}, m_c = 0.1 M_{\odot}$

gbmcmc/g(m): 50%, 90%, 99%; f(m): 5%, 10%

Summary

- Mass-inclination degeneracy is the major problem in constraining the pulsar's mass in optical observation
- Gravitational wave observation (complementary mass function) helps break the degeneracy
- Combining gravitational wave and optical observation could help us to constrain the EOS of pulsar