IV Gravi-Gamma-Nu Workshop

FROM MULTIWAVELENGTH TO MULTIMESSENGER: THE NEW SIGHT OF THE UNIVERSE OCTOBER 4-6, 2023 GRAN SASSO SCIENCE INSTITUTE- L'AQUILA, ITALY

THE KM3NET EXPERIMENT AND ITS PROSPECTS FOR MULTI-MESSENGER

ROSA CONIGLIONE ON BEHALF OF THE KM3NET COLLABORATION INFN - LABORATORI NAZIONALI DEL SUD (ITALY)

THE BIRTH OF NEUTRINO AND MULTI MESSENGER ASTRONOMY

neutrinos from the active galaxy NGC1068. Significance 4.2 σ . \leftarrow No correlation with high energy gammas

Clear connection between different astrophysical messengers established

THE HIGH ENERGY NEUTRINO DETECTORS

R&D phase

P-ONE

KM3NeT/ORCA In construction (14%) 8Mton

ANTARES (dismantled) 0.01 km³

KM3NeT/ARCA In construction (12%) 1km³ Baikal - GVD In construction 1km³

In China also:

HUNT ~30 km³ in Lake Baikal or the South China Sea

http://hunt.ihep.ac.cn/

NEON ~1 km³ in the South

China Sea <u>https://pos.sissa.it/</u> <u>444/1017/pdf</u>

R&D phase TRIDENT ~8 km³

IceCube-Gen2 Planned IceCube ~8 km³ 1 km³

THE KM3NET DETE Same technology for the two

4

Detectors in construct

CT odet	ORS Coratia Andorra
3	ptical sensor (DOM) 1 PMTs of 3 inches
	ORCA
	 Depth ~2500 m
	 One block of 115 Detection Units
	 Average distance between Detection Units ~20 m
	 Average vertical distance between DOMs ~9 m
	• ≈8 Mton
	ARCA
	 Depth ~3500 m
s is	 Two blocks of 115 Detection Units each
ection	 Average distance between Detection Units ~90 m
	 Vertical distance between DOMs ~36 m
tion	• Volume (0.5 × 2) km ³

THE PHYSICS

Neutrino Energy from MeV to PeV

Supernova explosions MeV

Neutrino oscillation GeV

ORCA

ARCA + ORCA

Dark Matter TeV HE neutrinos Multi-messenger program PeV

ARCA

THE KM3NET DETECTORS

Building Block (BB) *–* 115 Detection Units ARCA 2 BB ORCA 1BB Difference in the spatial distance of optical sensors

DETECTION PRINCIPLE

The basic elements:

8

- Strings *f* DU (Detection Unit)

The Digital Optical Module

DOM

It is a 17" glass sphere containing:

- 31 3" PMTs (photocathode aerea $\simeq 3 \times 10^{\circ}$ PMTs)
- LED and Piezo

• Front-end electronics -> FPGA

THE TECHNOLOGY

THE KM3NET/ARCA STATUS

9

THE KM3NET/ORCA STATUS

Current status 18 DUs deployed 16 DUs taking data

10

Many sea campaigns/year

Next campaigns

working DUs and add 4 DUs *4* 22 DUs •December 2023 sea campaign 👉 + 2 DUs 👉 24 DUs

THE KM3NET COLLABORATION

60 institutes in 20 countries

SEARCH FOR POINT-LIKE SOURCES

ARCA6 & ARCA8 & ARCA19 fully analyzed ARCA21 partially analyzed (until December 2022)

Large improvement in sensitivity is expected + 9 months of unprocessed ARCA21 data + extended detector (ARCA28 from sept 2023)

KM3NeT upper limits are quickly reaching the ANTARES 15yr limits

Also big improvements in angular resolution

ICRC2023 Pos 1018 https://arxiv.org/abs/2309.05016

Angular resolution

ARCA6 & ARCA8 & ARCA19 fully analyzed ARCA21 partially analyzed (until December 2022)

ICRC2023 Pos 1190 https://arxiv.org/abs/2309.05016

KM3NeT

||| < 31° and |b| < 5° for KM3NeT/ARCA6-8 and ||| < 31° and |b| < 4° for KM3NeT/ARCA19-21

13

DIFFUSE FROM THE GALACTIC PLANE

ANTARES 2007-2020 data Phys. Lett. B 841 (2023), p. 137951 2σ excess in tracks and showers \rightarrow hint for Galactic signal

For $E_v > 1$ TeV 21 track events observed -> 11.7±0.6 back. expected 13 shower events observed -> (11.2±0.9 back. expected

14 From the Galactic Center

DARK MATTER

From the sun ORCA6 analyzed

NEUTRINO OSCILLATION WITH KM3NET/ORCA

15

Baseline from 50 to 12800 km

Neutrino Mass Ordering measuring atmospheric neutrinos crossing the Earth

Energy range of interest 5-15 MeV

ORCA6 data Oscillation clearly seen both in tracks and showers

NEUTRINO OSCILLATION WITH KM3NET/ORCA

16

ICRC2023 Pos 996

Increased event sample of a factor 5: •Better selection track/shower - ICRC2023 Pos 1191 •Added showers •Livetime + 40%

Also competitive results in: • Tau appearance *f* ICRC2023 Pos 1107 •Neutrino decay - ICRC2023 Pos 997

KM3NeT/ORCA competitive

MULTI-MESSENGER PROGRAM

17

A dedicated software is installed at the shore stations for Real-Time Analysis (RTA)

Sending alerts Send neutrino alert to external communities

Receiving alerts

Receive alert from external communities - on-line analysis and follows ups

RTA platform already active from November 2022 in ARCA and in ORCA detectors

ICRC2023 Pos 1125 ICRC2023 Pos 1521

https://arxiv.org/abs/2309.05016

EM/MM external communities

MULTI-MESSENGER: ONLINE SOFTWARE ARCHITECTURE

18

- Event processing done separately for ORCA and ARCA at each shore station
- Data from each detector are transferred to a common dispatcher (MM dispatcher), where analysis pipelines are also activated
- Events reconstructed in real-time (both as track and shower) and classified (μ/ν) via machine learning algorithms

Not yet implemented Work on-going

MULTI-MESSENGER: ONLINE PROCESSING TIME

S(ICRC2023)1125

On average ~4 seconds to reconstruct and classify ARCA events

On average ~6 seconds to reconstruct and classify ORCA events

MULTI-MESSENGER: REAL TIME FOLLOW UPS

20

Reception of external alerts and automatic follow-ups of EM/GW alerts currently active

Each received alert is tagged -GRBs, GW extended region, Neutrinos identified by IceCube, Transient events (e.g., flaring/variable objects).

- External alerts trigger the RTA system *f* only events satisfying the following criteria are selected:
 - temporal and spatial coincidences
 - visibility in KM3NeT for up-going tracks
 - reported false alarm rate

On average ~2 alert /day

Only track events are considered (better angular resolution) Inclusion of shower events on-going

No significant excess has been found so far

MULTI-MESSENGER: ON LINE SYSTEM

Online system set for shifters

KM3NeT Shifter Tools home page				
 ORCA high-level monitoring ORCA RTA dashboard 	External triggers 126 ne		E Shifter manual	
🗠 ARCA high-level monitoring	KM3NeT alerts		Rocket chat	
ARCA RTA dashboard	Q Manual search		GCN writer	
 MM dashboard Analysis dashboard 			Current shift report	
🗠 CCSN monitoring			i ⇔ Shifters calendar	
new 709944284 GRB	2023-07-01 22:44:39 Selected	115.74 43.02	GCN_n Details Analysis	
new 709864601 GRB	2023-07-01 00:36:36 Selected	254.8 72.91	GCN_n Details Analysis	
S230630bq GW	2023-06-30 23:45:32 Selected		GCN_n Link Details Analysis	
new S230630am GW	2023-06-30 12:58:06 Selected		GCN_n Link Details Analysis	
new S230628ax GW	2023-06-28 23:12:00 Selected		GCN_n Link Details Analysis	
new 709676556 GRB	2023-06-28 20:22:31 Selected	175.02 12.29	GCN n Details Analysis	
new 709666599 GRB	2023-06-28 17:36:34 Selected	300.97 35.6	GCN_n Details Analysis	
new 709623341 GRB	2023-06-28 05:35:36 Selected	131.19 -12.54	GCN_n Details Analysis	
new 709608965 GRB	2023-06-28 01:36:00 Selected	351.77 -43.84	99 GCN_n Details Analysis	
new S230627c GW	2023-06-27 01:53:37 Selected		GCN_n Link Details Analysis	
new 709482627 GRB	2023-06-26 14:30:22 Selected	146.38 0.09	GCN_n Details Analysis	
new 709410255 GRB	2023-06-25 18:24:10 Selected	321.2 -18.66	GCN_n Details Analysis	
new S230624ax GW	2023-06-24 12:14:46 Selected		GCN_n Link Details Analysis	
new S230624av GW	2023-06-24 11:31:03 Selected		GCN_n Link Details Analysis	

Examples of GW follow ups

Alert	Analysis	Results	Plot
	MeV [0, 2s]	z-score=0.56	Skymap ORCA GW 52305331 liter 0
S230531f Burst	ORCA ±500 s	N _{ON} =0, N _{BKG} =4.23e-3	- C Master
	ARCA ±500 s	N _{ON} =0, N _{BKG} =2.78e-3	and a so with the second
FAR=1/13.6d	ORCA [-500s, +6h]	N _{ON} =0, N _{BKG} =9.22e-2	
	ARCA [-500s, +6h]	N _{on} =0, N _{BKG} =6.11e-2	
	MeV [0, 2s]	z-score=1.47	Skymap ARCA GW S2306010/ iter 0
S230601bf	ORCA ±500 s	N _{ON} =0, N _{BKG} =2.38e-3	
BBH (>99%)	ARCA ±500 s	N _{ON} =0, N _{BKG} =2.51e-3	
FAR=1.7e-15	ORCA [-500s, +6h]	N _{ON} =0, N _{BKG} =3.51e-2	
	ARCA [-500s, +6h]	N _{ON} =0, N _{BKG} =2.22e-2	
	MeV [0, 2s]	z-score=0.49	Skywap ORCA GW 52 809/32ap /ter 1
S230602ap	ORCA ±500 s	N _{ON} =0, N _{BKG} =2.33e-3	-
Burst FAR=1.48e-6 Hz	ARCA ±500 s	N _{ON} =0, N _{BKG} =2.48e-3	
	ORCA [-500s, +6h]	N _{ON} =0, N _{BKG} =3.43e-2	2010 order Of mpro
	ARCA [-500s, +6h]	N _{ON} =0, N _{BKG} =1.82e-2	

More than 100 GW alerts have been followed up so far

On-line system for the detection of SN explosions also in place

MULTI-MESSENGER: GRB221009A FOLLOW UPS

22

On 9 October 2022 the brightest long GRB ever detected was observed relatively close to us ($z \sim 0.15$) at RA=288.263° and DEC= +19.803°

- the most energetic GRB photon ever seen by Fermi LAT (99GeV) 👉 ATel #15656
- LHAASO 2000 sec after the GRB trigger detected photons up to 18 TeV 👉 GCN #32677
- IceCube did not detect neutrinos (search in -1 hour/+2 hours)

 GCN #32665

KM3NeT and GRB 221009A GRB 221009A was in the downgoing sky of the KM3NeT (ARCA21 and ORCA10) detectors at the time of the event • Online follow up done by KM3NeT [T0-50s, T0+5000s] (GCN #32741) 👉

- NO event found
- More refined offline follow up done during the [T0-50s, T0+5000s] and T0 ± 1 day *f* NO event found *f* upper limits have been set

ICRC2023 Pos 1503 https://arxiv.org/abs/

GRB 221009A

• Observations also at different wavelength 👉 MAXI/GSC, INTEGRAL SPI/ACS or HAWC ,....

2307.0	0010	
low-up		
iow-up		
low-up		
,		
и и ит		
и UT T0+5000:	5]	
и ит то+50009	5]	
и UT T0+50009	5]	
и UT T0+5000:	5]	
и UT T0+5000:	5]	
UT T0+5000s	5]	
и UT T0+5000:	5]	
UT T0+5000	5]	
UT T0+5000s	5]	
UT T0+5000	5]	
UT T0+5000s	5]	
4 28	5]	

SUMMARY

KM3NeT under construction 👉 present status: ARCA 28 DUs and ORCA 18DUs

23

First results presented at ICRC2023 *f* more than 40 contributions (<u>https://arxiv.org/abs/2309.05016</u>) KM3NeT upper limits are quickly reaching the ANTARES limits

Online multi-messenger analysis framework for KM3NeT in progress and already operative -Online analyses in place to look for temporal and spatial coincidences among the KM3NeT reconstructed events and GRBs, GW extended regions, neutrinos identified by IceCube, transient events

More than 300 online analyses performed so far (mainly after GRB external triggers); no significant excess has been found

24

SPARE

June 2022 sea campign: 11 DUs and 2 JBs + recovery of TJB

DU DEPLOYMENT

MOVIE: DU DEPLOYMENT

MOVIE: THE UNROLLING

27

MOVIE: LOM AT SEA SURFACE

THE INTEGRATION

DOM integration

Base Module integration

THE INTEGRATION

Visibility for up-going tracks

Complementary detectors

WHY TWO LARGE DETECTORS

Galactic coordinates

EVENT TYPE AND ANGULAR RESOLUTION

	TRACK*	CASCADE*
ANTARES	0.3 °	3 °
KM3NET	0.1 °	1.5 °
ICECUBE	0.3°	7 ° - 8 °
BAIKAL -GVD	0.25°	3° - 3.5°
esolution at 100 TeV		

KM3NeT

Tracks: very long path (Eµ>1TeV several km) Big lever arm •Good angular resolution

Cascades: small path (Ecasc >1TeV some tens of meters) Modest angular resolution

IC resolution for tracks

from arXiv:1910.08488, 15 October 2019

EVENT TYPE AND ENERGY RESOLUTION

Tracks: very long path (Eµ>1TeV several km) Neutrino interaction vertex far from the detector Modest energy resolution

Cascades: small path ($E_{casc} > 1$ TeV some tens of meters) All the energy released inside the detector • Good energy resolution

	TRACK IN LOG(E)	CASCADE
ANTARES	35%	5%
ΚΜЗΝΕΤ	27%	5%
ICECUBE	~ 30%	10%
BAIKAL -GVD		

ArXiv:1705.02383

NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE

34

- Each DOM is a detector

NEUTRINOS FROM CORE-COLLAPSE SUPERNOVAE

35

Eur. Phys. J. C (2021) 81:445

