Potential biases and prospects for the Hubble constant estimation from a joint EM and GW analysis of neutron star merger

Giulia Gianfagna,^{1,2}* Luigi Piro,¹ Francesco Pannarale,^{2,3} Hendrik Van Eerten,⁴ Fulvio Ricci,^{2,3} Geoffrey Ryan,⁵

iang

¹INAF - Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, 00133 Rome, Italy
 ²Dipartimento di Fisica, Università di Roma "Sapienza", Piazzale A. Moro 5, I-00185, Roma, Italy
 ³INFN Sezione di Roma, Piazzale A. Moro 5, I-00185, Roma, Italy
 ⁴Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
 ⁵Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada

Image credits: https://www.ligo.caltech.edu/page/press-release-gw170817

GW170817 and GRB 170817A

Gravitational Wave, Abbott et al, 2017

IV Gravi-Gamma-Nu Workshop

GW170817 afterglow modeling

•Model: afterglowpy (Ryan et al, 2020)

- θ_V Jet orientation
- θ_c Opening angle of the jet
- *E*₀ Isotropic equivalent energy
- n₀ homogeneous circumburst medium number density
- θ_W Jet total width
- p power-law slope of the electron population
- ϵ_e fraction of post-shock internal energy in the accelerated electron population
- $\epsilon_{B} ~~{\rm fraction~of~post-shock~internal~energy~in~magnetic}$ field
- *b* power law index (only for power law jet)
- d_L luminosity distance

GW modeling

GW+EM joint fit and Ho estimation

$d_{i} - \theta v$ degeneracy

- Far source
- Binary orbit facing Earth
- Close source
 Highly inclined

GW-only:
$$H_0 = 77^{+21}_{-10} \text{ km s}^{-1} \text{ Mpc}^{-1}$$

How to break this degeneracy? EM dataset: Afterglow (AG) light curve => GW+AG fit

GW+AG analysis

Giulia Gianfagna

Why is the afterglow not enough?

 θc : jet opening angle

GW+AG+C (Centroid) analysis

GW+AG+C: the Hubble constant

How likely is a new centroid measurement?

Conclusions

Binary neutron star mergers are interesting events in:

- ASTROPHYSICS:
 - Information about the **geometry** of the event and on the **relativistic jet theory**.
- COSMOLOGY: estimation of **Ho**, independently from any distance ladder:
 - GW-only fit: 20% error on **Ho**, because of $d_1 \theta v$ degeneracy;
 - GW+AG fit: cut the tails of the degeneracy, but Ho is high;
 - GW+AG+C fit: degeneracy broken and acceptable H0. The uncertainty on H0 is still large (~4 km/s/Mpc), with respect to the *Planck* and SH0ES measurements (~1 km/s/Mpc);
 - The more the number of counterparts, the more robust is H0.

THANK YOU for your attention!

Backup slides

Previous work

Gianfagna et al, 2023, MNRAS

14

Gaussian jet fit

RA offset [mas]

Parameter	GW+AG	GW+AG+C
	GJ	GJ
$\log_{10} E_0$	52.3 ^{+0.8} -0.8	$53.7^{+1.3}_{-1.2}$
$\theta_c [\text{deg}]$	7.73+0.86	$2.80^{+0.25}_{-0.21}$
θ_W [deg]	57^{+19}_{-19}	47^{+26}_{-25}
$\log_{10} n_0$	$-0.7^{+0.8}_{-0.8}$	$-2.9^{+1.3}_{-1.1}$
р	$2.11^{+0.01}_{-0.01}$	$2.11^{+0.01}_{-0.01}$
$\log_{10} \epsilon_{\rm e}$	$-1.7^{+0.7}_{-0.7}$	$-2.7^{+1.0}_{-1.2}$
$\log_{10} \epsilon_{\rm B}$	$-3.8^{+0.8}_{-0.8}$	$-3.0^{+1.1}_{-1.3}$
		GW+AG+C
SW+AG Large θ_v Broader profile Less energy on		 Small θ_ν Highly collimated jet

d _L [Mpc]	$31.3^{+3.0}_{-3.6}$	$43.8^{+1.5}_{-1.4}$
$\theta_{\rm v}$ [deg]	50^{+5}_{-5}	$17.8^{+1.3}_{-1.5}$
$\theta_{\rm JN}$ [deg]	130^{+5}_{-5}	$162.2^{+1.3}_{-1.5}$
\mathcal{M}	$1.1975^{+0.0001}_{-0.0001}$	$1.1975^{+0.0001}_{-0.0001}$
q	$0.87_{-0.09}^{+0.08}$	$0.87^{+0.09}_{-0.09}$
a_1	$0.02^{+0.02}_{-0.01}$	$0.02^{+0.02}_{-0.01}$
a_2	$0.02^{+0.02}_{-0.01}$	$0.02^{+0.02}_{-0.01}$
θ_1 [deg]	81^{+32}_{-34}	80^{+34}_{-34}
θ_2 [deg]	82^{+35}_{-34}	83 ⁺³⁵ -36
$\phi_{1,2}$ [deg]	177^{+122}_{-121}	175^{+122}_{-117}
$\phi_{\rm JL}$ [deg]	174^{+124}_{-119}	175^{+123}_{-119}
ψ [deg]	88 ⁺⁵³ -73	90^{+60}_{-61}
Λ_1	274^{+385}_{-187}	265^{+348}_{-184}
Λ_2	425^{+534}_{-292}	419^{502}_{-286}

- Large energy on the jet axis

the jet axis

Power law jet fit

Parameter	GW+AG	GW+AG+C
	PLJ	PLJ
$\log_{10} E_0$	52.1 ^{+0.8} -0.9	$53.9^{+1.1}_{-1.2}$
θ_c [deg]	$5.57^{+0.69}_{-0.62}$	$2.16^{+0.20}_{-0.16}$
θ_W [deg]	58^{+18}_{-18}	49^{+24}_{-25}
$\log_{10} n_0$	$-0.4^{+0.8}_{-0.8}$	$-2.4^{+1.1}_{-1.2}$
р	$2.12^{+0.01}_{-0.01}$	$2.12^{+0.01}_{-0.01}$
$\log_{10} \epsilon_{\rm e}$	$-1.3^{+0.7}_{-0.7}$	$-2.6^{+1.0}_{-1.0}$
$\log_{10} \epsilon_{\rm B}$	$-3.8^{+0.8}_{-0.8}$	$-3.4^{+1.1}_{-1.2}$
b	$7.5^{+1.6}_{-1.1}$	$10.9^{+0.7}_{-1.0}$
N+AG		GW+AG+C

GW+AG	GW+AG+C
- Larae θ_v	- Small θ_v
- Brooder orofile	- Highly col
- Less eneroy on	jet
the jet oxis	- Large ene
	the jet axis

d _L [Mpc]	$23.7^{+3.8}_{-3.4}$	$43.0^{+1.4}_{-1.4}$
$\theta_{\rm v}$ [deg]	63^{+5}_{-4}	$19.7^{+1.3}_{-1.8}$
$\theta_{\rm JN}$ [deg]	117^{+5}_{-4}	$160.3^{+1.3}_{-1.8}$
М	$1.1975^{+0.0001}_{-0.0001}$	$1.1975^{+0.0001}_{-0.0001}$
q	$0.88^{+0.8}_{-0.9}$	$0.89^{+0.07}_{-0.08}$
a_1	$0.02^{+0.02}_{-0.01}$	$0.02^{+0.02}_{-0.01}$
a_2	$0.02^{+0.02}_{-0.01}$	$0.02^{+0.01}_{-0.02}$
θ_1 [deg]	83 ⁺³³ -33	72^{+31}_{-30}
θ_2 [deg]	81^{+34}_{-34}	97^{+32}_{-31}
$\phi_{1,2}$ [deg]	178^{+118}_{-120}	174^{+125}_{-117}
$\phi_{\rm JL}$ [deg]	176^{+122}_{-120}	180^{+116}_{-121}
ψ [deg]	68^{+43}_{-60}	89^{+62}_{-62}
Λ_1	280^{+356}_{-193}	310^{+345}_{-208}
Λ_2	452 ⁺⁵³³ -307	451^{+495}_{-302}

Same as	Gaussia	n jet !
---------	---------	---------

- Highly collimated

- Large energy on

Gaussian jet with constant component

Parameter

	011110	0
	GJ + Constant	GJ + Constan
$\log_{10} E_0$	52.8 ^{+0.90} -0.86	53.9 ^{+1.2}
θ_c [deg]	$5.37_{-0.87}^{+0.97}$	$2.59^{+0.20}_{-0.18}$
θ_W [deg]	52^{+22}_{-21}	48^{+25}_{-26}
$\log_{10} n_0$	$-1.4^{+0.9}_{-0.9}$	$-2.7^{+1.2}_{-1.2}$
р	$2.12^{+0.01}_{-0.01}$	$2.12^{+0.01}_{-0.01}$
$\log_{10} \epsilon_{\rm e}$	$-1.9^{+0.8}_{-0.8}$	$-2.9^{+1.1}_{-1.1}$
$\log_{10} \epsilon_{\rm B}$	$-3.6^{+0.8}_{-0.9}$	$-3.2^{+1.2}_{-1.2}$
Cradio	$-2.99^{+0.23}_{-0.20}$	$-2.89^{+0.24}_{-0.25}$
Contical	$-5.25^{+0.23}_{-0.22}$	$-5.24^{+0.24}_{-0.23}$
c _{X-rays}	$-7.48\substack{+0.05\\-0.03}$	$-7.48^{+0.09}_{-0.10}$
d _L [Mpc]	38.6 ^{+2.5}	$44.7^{+1.4}_{-1.4}$
$\theta_{\rm v}$ [deg]	$35.2^{+5.7}_{-6.2}$	$16.8^{+1.1}_{-1.2}$
$\theta_{\rm JN}$ [deg]	$144.8^{+5.7}_{-6.2}$	$163.2^{+1.1}_{-1.2}$

GW+AG

GW+AG+C

Constant flux component at late time of the type:

$$F_{\nu} = F_{\nu,\text{agpy}} + 10^c$$

м	$1.1975^{+0.0001}_{-0.0001}$	$1.1975^{+0.0001}_{-0.0001}$
q	$0.87^{+0.08}_{-0.09}$	$0.87^{+0.08}_{-0.09}$
a_1	$0.02^{+0.02}_{-0.01}$	$0.02^{+0.02}_{-0.01}$
a_2	$0.02^{+0.02}_{-0.02}$	$0.02^{+0.02}_{-0.01}$
θ_1 [deg]	79^{+34}_{-32}	82^{+33}_{-34}
θ_2 [deg]	82^{+34}_{-36}	83^{+34}_{-35}
$\phi_{1,2}$ [deg]	178^{+117}_{-119}	176^{+124}_{-119}
ϕ_{JL} [deg]	6177^{+120}_{-121}	174^{+123}_{-120}
ψ [deg]	90^{+61}_{-65}	91^{+61}_{-62}
Λ_1	268^{+333}_{-179}	270^{+344}_{-184}
Λ_2	447^{+537}_{-305}	416^{+489}_{-279}
Λ_2	447 ⁺⁵³⁷ -305	416^{+489}_{-27}

Including a constant flux component at late times

1. ...

Ho posterior

Ho results for Gaussian jet: GW: 77^{+21}_{-10} km s⁻¹Mpc⁻¹ GW+AG+C: $68.9^{+4.4}_{-4.3}$ km s⁻¹Mpc⁻¹ GW+AG: 96^{+13}_{-10} km s⁻¹Mpc⁻¹ Planck: 67.4 ± 0.5 km s⁻¹Mpc⁻¹ SH0ES: 74.0 ± 1.4 km s⁻¹Mpc⁻¹

Einstein Probe

Mission of the **Chinese Academy of Sciences (CAS)** dedicated to discover **high-energy transients and monitor variable objects**.

Launch: end 2023. Lifetime of 3 years. Einstein Probe website.

2 telescopes on board:

- WXT: very large instantaneous field-of-view (3600 square degrees) achieved by using established technology of novel lobster-eye optics. Unprecedentedly high sensitivity with respect to previous and existing X-ray all-sky monitors (eROSITA and XMM-Newton). Bandpass: 0.5-4.0 keV.
- FXT: X-ray focusing telescope (Wolter-I) with a larger effective area to perform follow-up characterization. It has a narrow field of view (60 arcmin in diameter) and a source localization error of 5-15 arcsec (90% c.l.) depending on the source strength. Bandpass: 0.5-10 keV.