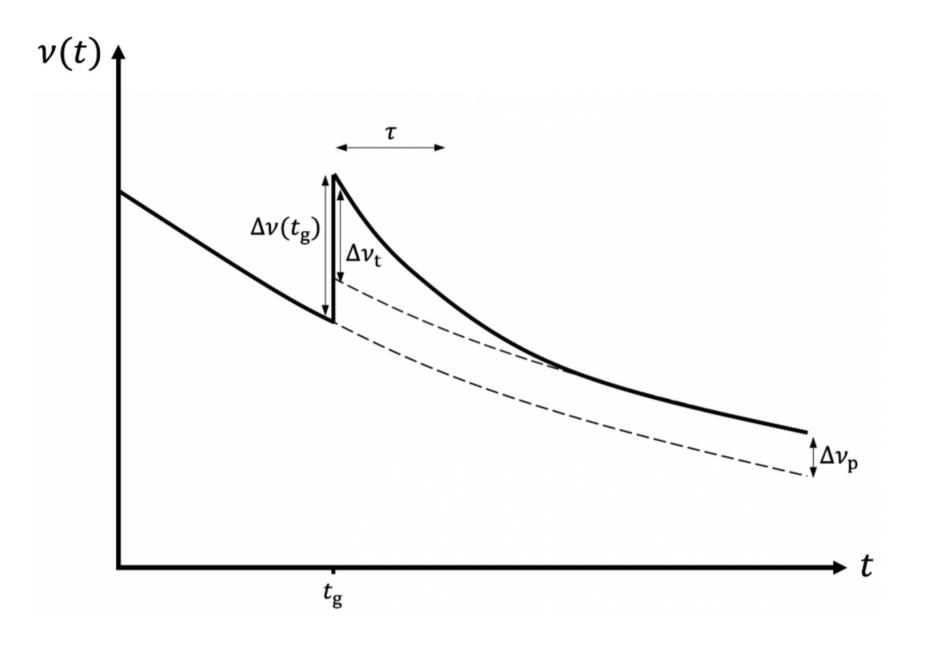

GAMMA-RAY PULSAR GLITCHES: A STUDY OF VARIABILITY IN FERMI-LAT DATA

IV Gravi-Gamma-Nu Workshop 4-6 October 2023

Cozzolongo G.¹, Razzano M.², Fiori A.², Saz Parkinson P.³ on behalf of the Fermi LAT collaboration

> ¹University of Pisa ²University of Pisa & INFN ³University of California at Santa Cruz

WHAT IS A PULSAR?

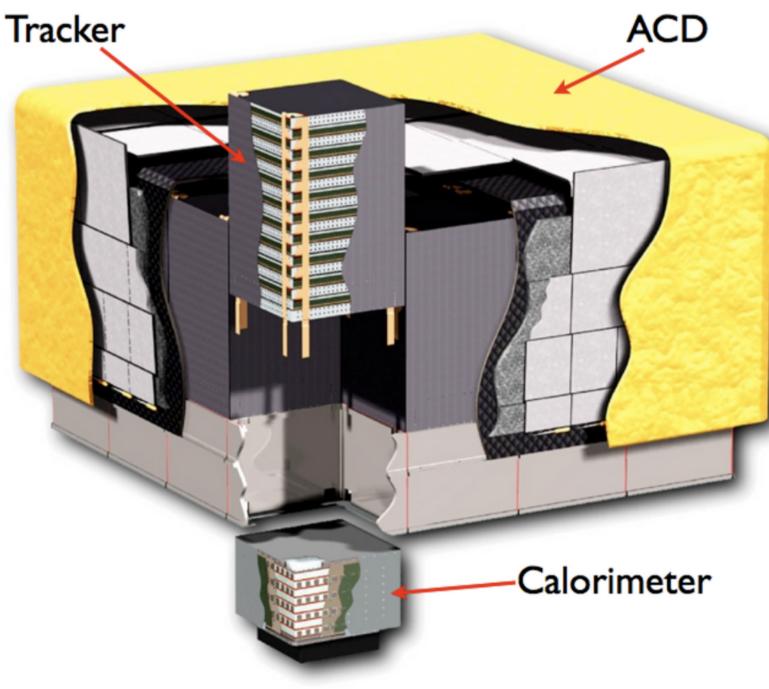

- Emitting periodic signals across the
 - whole electromagnetic spectrum.
- Among the most stable rotators known in the universe.
- Slowing down gradually because of the conversion of rotational energy into electromagnetic radiation, pulsar wind and gravitational waves.

- Their y-rays are observed with LAT.

Credits: Lyne & Graham-Smith, 2012.

- Highly magnetized and rapidly
 - rotating neutron star.

PULSAR GLITCHES


- Followed by an exponential recovery.
- Two main interpretations:
 - **starquakes** occurring in the star
 - crust (e.g. Rencoret et al., 2021);
 - **pinned vorticity** in the superfluid
 - core (e.g. Sourie et al., 2020).

Credits: Yim & Jones, 2020.

• A glitch is a **discontinuous step in** rotation frequency.

- Gitches have been attributed to a
 - variety of mechanisms.

LARGE AREA TELESCOPE (LAT)

Credits: Atwood et al., 2007.

- - 128 glitches.

• Fermi Gamma-ray Space Telescope. Launched by NASA on June 11, 2008.

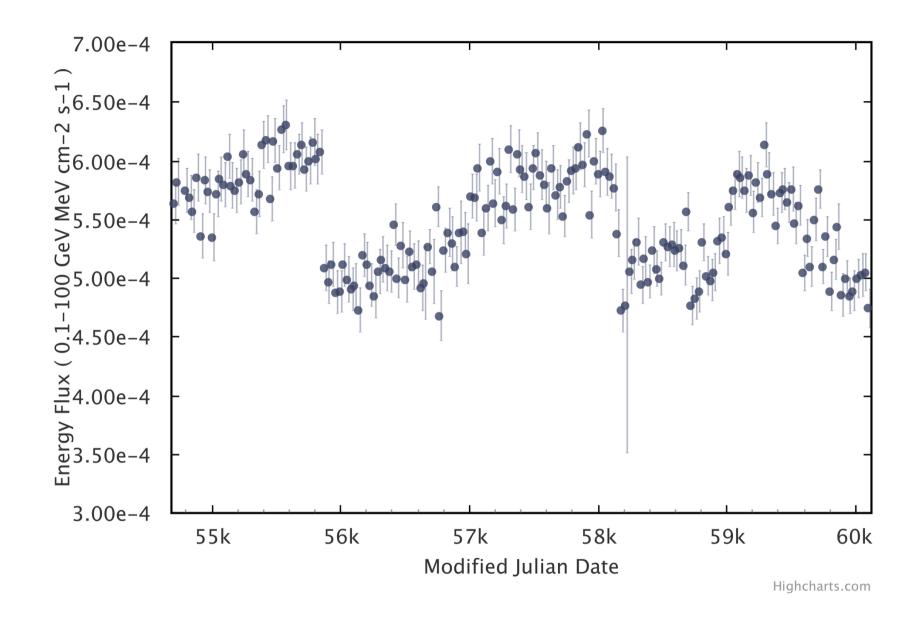
• Pair conversion telescope.

• Detect photons in an energy range from 20 MeV to over 300 GeV.

• Field of view 2.4 steradian (20% sky).

• Covers the **entire sky** in 3 hours.

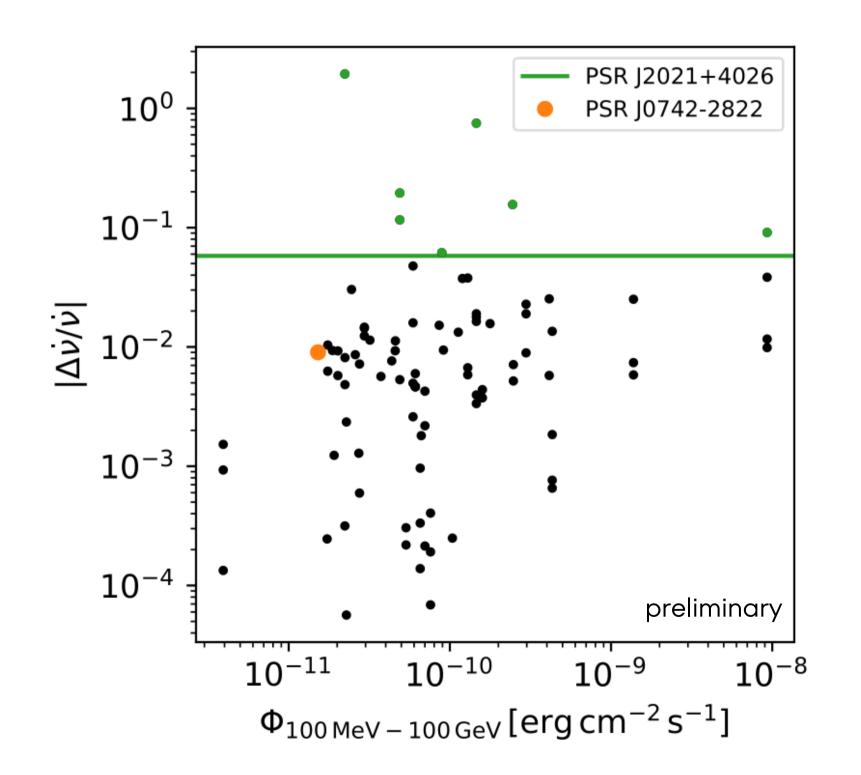
• Measures of **time**, **energy** and


direction of incident photons.

• Third LAT Pulsar Catalog (3PC):

• **294** pulsar;

• 54 glitching pulsars;


VARIABLE GAMMA-RAY PULSARS

Credits: Fermi-LAT Light Curve Repository.

- PSR J2021+4026 variability was first discovered by LAT.
- First and only pulsar with variable yray emission.
- In 2011, **flux dropped** by (17.6 ± 1.7)%, while rotational frequency
 - derivative increased by $(5.8 \pm 0.9)\%$ (Allafort et al., 2013) followed by a
 - recovery.
- To date, there is no pulsar emission model capable of explaining the **variability** (Philippov & Kramer, 2022).

PULSAR SAMPLE (1)

• We search for similar variability in

3PC glitching pulsars.

• We selected a **subset** of glitches:

• 7 glitches with relative rotational frequency derivative jump larger or comparable to 5.8%.

• 2 glitches in a switching radio pulsar with LAT counterpart (i.e., PSR J0742-2822), whose rotational frequency derivative changes by 0.66%, while the radio pulse full widths at 75% changes by 20% (Lyne et al., 2010).

PULSAR SAMPLE (2)

PSR [J2000]	ν [Hz]	$\dot{\nu} \left[-10^{-11} \right]$	$ au_{ m c} [m kyr]$	$B_{\rm S}[10^{12}{\rm G}]$	$\dot{E}_{ m rot} [-10^{37} { m erg} { m s}^{-1}]$	GLEP ¹ [MJD]	$\Delta u / u [10^{-9}]$	$\Delta \dot{ u} / \dot{ u} [10^{-3}]$
J0835-4510 ²	11.19	1.55	11.3	3.38	0.69	5655 5	3091.21	91.09
J1023-5746	8.97	3.05	4.6	6.62	1.1	55024	3136.47	-751.35
J1028-5819	10.94	0.19	89.87	1.23	0.083	57853	2342.98	156.18
J1341-6220	5.17	0.68	12.1	7.08	0.14	55042	-724.87	-1942.17
J1833-1034	16.15	5.27	4.85	3.58	3.4	55156	-48.00	-61.74
J2111+4606	6.34	0.65	17.5	4.81	0.14	54750	-442.26	-116.22
J2111+4606	-	-	-	-	-	55668	1376.77	195.1
J0742-2822 ³	6.00	0.06	158.81	1.69	0.014	55020	103.72	9.02
J0742-2822	-	-	-	-	-	56727	2.94	0.00

7

¹glitch epoch ²Vela Pulsar ³switching radio pulsar

SPECTRAL VARIABILITY

PSR [J2000]	$n_{\sf glitch}$	σ_{N_0}	$\sigma_{\Gamma_{S}}$
J0835-4510		0.1	0
J1023-5746		0.1	0
J1028-5819		0.1	0
J1341-6220		2	1
J1833-1034		0.5	2
J2111+4606		1	0.6
J2111+4606	II	0.3	1
J0742-2822		0.5	0.3
J0742-2822	II	0.1	0.1

Summed and weighted likelihood.

- Event types are based on the **quality** of the reconstructed direction.
- Science Tools by LAT Collaboration
 - integrated in our Python package.
- Analysis on the batch farm at SLAC.
- Pulsar spectral model: $dN/dE \propto N_0 E^{-\Gamma_s}$.
- **Spectral parameters** pre/post-glitch
 - variations in units of standard
 - deviations.

- We prepare different sets of data and
 - include as separated components.

• No significant variability detected.

PULSE PROFILE VARIABILITY

PSR [J2000]	$n_{ m glitch}$	$\sigma_{\delta_{P1}}$	$\sigma_{\delta_{P2}}$	$\sigma_{\Delta_{ t P1-P2}}$	$\sigma_{\rm P1/P2}$
J0835-4510	I	-	_	-	-
J1023-5746		1.2	0.5	0	0.4
J1028-5819		0	0.8	1	0
J1341-6220		-	-	-	-
J1833-1034	I	0	0	0	0
J2111+4606		-	-	-	-
J2111+4606	II	0.2	1	0.7	2
J0742-2822		-	-	-	-
J0742-2822	II	-	-	-	-

• Best fit with the high-precision Python pulsar timing data analysis package PINT (Luo et al., 2019).

• The obtained pulse profiles always

show **two peaks** (P1 and P2).

 Pre/post-glitch variations in units of standard deviations for:

• peaks' widths;

 displacement of P2 from P1; o ratio between peak amplitudes.

• For some intervals, photons were not

enough to distinguish the pulses.

• No significant variability detected.

SUMMARY AND OUTLOOK

- There are **294 pulsars**, **54 glitching pulsars** and **128 glitches** in LAT data.
- This is the first search of y-ray emission variability correlated with glitches.
- We considered a **subset of glitches** that we consider particularly promising.
- We did not find any significant variability, thus **PSR J2021+4026 remains unique**.
- **No model** is currently able to accurately predict the y-ray pulsar state changes.
- If **similar variable pulsars** were found, further advancements could be achieved.
- This variability analysis can be applied to **all other glitches** too.

Thank you for listening!

MSc Giovanni Cozzolongo Department of Physics "E. Fermi", University of Pisa e-mail: g.cozzolongo@studenti.unipi.it