The host galaxies of binary compact objects

OpenAI. (2023). "The host galaxies of binary black hole mergers in pixel art" [Digital image]. Retrieved from https://openai.com/dall-e/

Filippo Santoliquido

L'Aquila, Gravi-Gamma-Nu workshop, October 4-6, 2023

- Why we need to study the host galaxies of compact objects?
 - crucial to explore likely formation mechanisms
 - increase the chances to identify host galaxies. •
- How we did it?
 - galaxyRate is a unique approach, featuring unprecedented speed
 - a realistic model of star formation

Host galaxies

WITTER CONTRACTOR AND CONTRACTOR OF THE CONTRACT OF THE CONTRACTOR OF THE CONTRACTOR

Population of star-forming galaxies from observational scaling relations

Chruslinska et al. 2019

Speagle et al. 2014, Boogaard et al. 2018

Host galaxies

Mannucci et al. 2009, Mannucci et al. 2011

We evolved binary stars with population-synthesis code SEVN

Host galaxies

Catalogs of merging BBHs (primary mass, secondary mass, delay time, etc.)

is available at <u>https://</u> gitlab.com/sevncodes/sevn (*lorio et al. 2022*)

Passive galaxies

Passive galaxies

- I explore the properties of host galaxies with galaxyRate
- **BBHs** can merge in **low-mass host galaxies** ullet
- All compact objects have more chances to be hosted in **passive galaxies** •

Download galaxyRate at https://filippo-santoliquido.github.io/software/

Conclusions

Backup slides

Filippo Santoliquido - PhD Thesis Defence

Population-synthesis

isolated formation channel: main physical processes

- mass transfer during Roche lobe overflow can be \bullet
 - Stable mass transfer (accretion efficiency f_{MT} Mapelli 2018)
 - Unstable mass transfer leads to the common envelope phase $(\alpha\lambda$ -formalism, <u>Webbink 1984</u>):
 - basic idea: the energy needed to unbind the envelope comes from the loss of orbital energy ($\Delta E = E_{env}$)
 - α measures the fraction of the removed orbital energy transferred to the envelope

single stellar evolution: stellar winds

- Massive stars lose mass by stellar winds which depend on metallicity and Eddington ratio (e.g. Vink et al. 2011)
- $\dot{M} \propto Z^{\beta}$ (Chen et al. 2015)
- This mass loss has also consequences during binary evolution:
 - metal-rich stars tend to interact less during binary evolution, because they are more compact
 - thus, common envelope phase is less effective for metal-rich stars

Filippo Santoliquido - PhD Thesis Defence

$\alpha \lambda$ formalism for modelling the common envelope

•
$$\Delta E = \alpha (E_{b,f} - E_{b,i}) = \alpha \frac{Gm_{c1}m_{c2}}{2} \left(\frac{1}{a_f} - \frac{1}{a_i}\right)$$
 This is

•
$$E_{\text{env}} = \frac{G}{\lambda} \left[\frac{m_{\text{env},1}m_1}{R_1} + \frac{m_{\text{env},2}m_2}{R_2} \right]$$
 This is the binding e

• By imposing
$$\Delta E = E_{\text{env}}$$
, $\frac{1}{a_{\text{f}}} = \frac{1}{\alpha\lambda} \frac{2}{m_{\text{c}1}m_{\text{c}2}} \left[\frac{m_{\text{env},1}m_1}{R_1} + \frac{m_{\text{env},2}m_2}{R_2} \right] + \frac{1}{a_i}$

- \bullet envelope).
- reproduce the final orbital separation obtained with hydrodynamical simulations.

the orbital energy before and after the common envelope phase

energy of the envelope

Where λ is the parameter which measures the concentration of the envelope (the smaller λ is, the more concentrated is the

• The $\alpha\lambda$ formalism is a simplified prescription. When $\alpha > 1$, we account for other sources of energy that make the envelope less bind, for instance recombination energy. Recent works (e.g. *Fragos et al. 2019*) suggest that $\alpha > 1$ is necessary to

different main sequence of star-forming galaxies

https://arxiv.org/pdf/2205.05099.pdf

$SFRD = GSMF \times MS$

Filippo Santoliquido - PhD Thesis Defence

host galaxies through a probabilistic approach

In order to study the **host galaxies** of compact objects, we have to **link** the properties of the formation galaxies (that we know) to the properties of host galaxies. To do so, I implemented a <u>new</u> method, based on two steps:

1. **Sampling.** I estimated from the galaxy catalogs from the EAGLE cosmological simulation the following conditional probability $p(M_{host}, SFR_{host} | M_{form}, SFR_{form}, z_{form}, z_{merg})$. In this way, each sampled galaxy formed at

 $z_{form} \ge z_{merg}$ is associated with one and only one galaxy at *z_{merg}*.

2. Merger trees. In order to reproduce the galaxy hierarchical assembly, I sum together the merger rates that end up in the same host galaxy

Universe at *z*_{form}

If **multiple** formation galaxies are **linked to** the same host galaxy, their merger rates are summed together

Host galaxies are sampled from the conditional probability

Universe at *z_{merg}*

merger rate density with galaxyRate

- different evolution of BBH ulletmerger rate density with either MZR or FMR.
- The merger rate density of BHNS and BNS is inside the 90% credible interval inferred from O3b
- BNS merger rate density is • dominated by SFRD evolution and it is extremely sensitive to the **Common Envelope** evolution

merger rate per galaxy

- Here I am showing the merger rate per galaxy as function of stellar mass
- I compare it with results obtained with EAGLE cosmological simulation Artale et al. 2020
- correlation of $n_{\rm GW}$ with stellar mass depends on redshift and metallicity evolution model for BBHs

