TDE rates under the magnifying glass

Elisa Bortolas

University of Milano-Bicocca

Main collaborators: A. Sesana, T. Ryu, L. Broggi, M.Polkas, D. Izquierdo Villalba, S. Bonoli

4th GRAVI-GAMMA-NU WORKSHOP

GSSI, L'Aquila, October 4th, 2023

Tidal disruption events

$$R_{\text{TDE}} \approx \left(\frac{M_{\text{BH}}}{m_{\star}}\right)^{1/3} R_{\star} = 3.6 \times 10^{-6} \text{ pc} \left(\frac{M_{\text{BH}}}{4 \times 10^6 \text{ M}\odot}\right)^{1/3}$$

Ubiquitous production mechanism: two-body relaxation

Two-body relaxation between stellar objects slowly perturbs stellar orbits → statistically, at some point, a star can reach a *deadly* orbit and get disrupted

Ubiquitous production mechanism: two-body relaxation

Two-body relaxation between stellar objects slowly perturbs stellar orbits \rightarrow statistically, at some point, a star can reach a *deadly* orbit and get disrupted

LOSS CONE THEORY to compute TDE rates Lightman&Shapiro77, Cohn&Kulsrud78 **Loss cone = region of phase space containing stars with** <u>instantaneous</u> pericentre smaller than r_t – or equivalently $j < (G M_{BH}r_t)^{\frac{1}{2}}$

If a star <u>reaches the pericentre</u> when its orbit is in the loss cone, it "**disappears**" from the system (eaten by the MBH).

Ubiquitous production mechanism: two-body relaxation

Two-body relaxation between stellar objects slowly perturbs stellar orbits \rightarrow statistically, at some point, a star can reach a *deadly* orbit and get disrupted

LOSS CONE THEORY to compute TDE rates Lightman&Shapiro77, Cohn&Kulsrud78

OPEN PROBLEMS:

Predicted TDE rates ~ a few x 10⁻⁴ /galaxy/year

Observed TDE rates ~ 10⁻⁵ galaxy/year

Estimates on TDE rates suffer from **many** simplifications

Wang&Merritt05, Stone&Metzger16, Stone+20 VanVelzen+18, Yao+23

1. Stellar mass function

- 2. Time-dependent rates
- 3. Partial vs total disruptions

A complete stellar mass function (+time dep. rates)

(French+16, Graur+18, Hammerstein+21)

An explanation for the post-starburst preference

 Relaxation effects (→ TDE rates) depend on <m²>, that can be much larger than 1 M^o for a young population (Merritt2013)

$$\langle m^2 \rangle = \int_{m_{\min}}^{m_{\max}} \text{IMF}(m) \, m^2(t) dm$$

Monochromatic *vs* complete stellar mass function

Almost all TDE rate estimates assume the system to be composed by 1 Mo, 1 Ro stars but galaxies feature broad mass functions that evolve with time

Considering a non-monochromatic mass function can substantially affect the time evolution of TDE rates!

Heavy stellar objects undergo mass segregation

 $t_{\rm mass \ segr.} \approx \frac{0.0814 v_{\rm rms}^3}{G^2 \tilde{m}_{\star} \rho_{\star} \ln \Lambda}$

Starbursting galaxies might have top-heavy initial mass functions (Zhang+2018, Lu+13)

The time evolution of TDE rates

Evolved with the Fokker-Plank 1-D code *Phaseflow* (Vasiliev17)

The time evolution of TDE rates

Evolved with the Fokker-Plank 1-D code **Phaseflow** (Vasiliev17)

Interpretation

It is an outcome of two-body relaxation!

Interpretation

It is an outcome of two-body relaxation!

Mass segregation and the related efficient

Important considerations:

- When does the clock for the "TDE burst" **start?** Every time there is an event violent enough to completely reshuffle the stellar distribution in the center (star formation burst, galaxy merger, infall of stellar cluster...)
- The fact that stars slowly evolve and 2. become white dwarfs, neutron stars, black holes has a negligible impact on the drop of TDE rates!
- One does not need a complete IMF to 3. recover the rate drop. Already including stellar BHs does most of the job.

Preliminary work with a semi-analytical model

Semianalytical model (gal. evolution) to estimate TDE rates

L-galaxies SAM [Henriques+15]

Semianalytical model (gal. evolution) to estimate TDE rates

Partial tidal disruption events

Partial vs total tidal disruption events

Stars getting close to, but not crossing the tidal disruption radius can get *partially disrupted*

Less mass available for disruption → less luminous flares

The characteristic light-curve of partial disruptions declines as $t^{-9/4}$ at late times (Coughlin&Nixon19)

Relatively little literature work focussing on partial tidal disruption event *rates*!

A few candidates (Payne+21, Liu+23, Wevers+23)

Towards a new definition of loss cone

Towards a new definition of loss cone

log(star semimajor axis

Towards a new definition of loss cone

Very eccentric orbits: easily deflected *out of the loss cone*

Here partial disruptions cannot repeat

orbital time

relaxation time for an orbit near the loss cone

Less eccentric orbits: relaxation is inefficient within an orbital period

Here partial disruptions can repeat

A new definition of loss cone

log(star semimajor axis

a)

What is the *partial* tidal disruption radius?

log(star semimajor axis

<u>Redefining the loss cone</u> in the realm of partial TDEs

LOSS CONE THEORY to compute TDE rates

Loss cone = region of phase space containing stars with <u>instantaneous</u> pericentre smaller than r_t – or equivalently $j < (G M_{BH}r_t)^{\frac{1}{2}}$

If a star <u>reaches the pericentre</u> when its orbit is in the loss cone, it "**disappears**" from the system (eaten by the MBH).

The loss cone should be defined as the maximum radius that guarantees a partial disruption

What happens after a partial TDE?

- The star receives a kick and gets far from the loss cone
- The star undergoes a series of events and eventually gets entirely consumed by the MBH

ightarrow either way, the star is "lost"

A stellar system dominated by the full loss cone (bulge only)

$$q \gg 1$$

MBH of 10⁶ Msun

Most of the events come from $q \gg 1$

Little repeating partial disruptions

Standard estimates of total TDE rates remain reasonable

Partial TDEs rates are about 50 times more abundant than total TDEs

Results obtained usign the 1-D Fokker-Planck integrator Phaseflow (Vasiliev15)

Results: a Milky-Way-like nucleus

$$q \ll 1$$

Milky-way like galaxy with a high central density (**features a nuclear star cluster**)

Most of the events come from $q \ll 1$

Many repeating partial disruptions (x2)

<u>Standard rates of total TDE rates are</u> <u>severely overestimated</u> (by ~ 1 order of magnitude)

Partial TDEs rates are about 10-20 times more abundant than total TDEs

Conclusions

TDEs are great to probe the low-mass end of the MBH mass function but we need to know well their event rates!
It is very important to make use of a time-dependent

estimate of TDE rates to recover the observed event rates

• It is fundamental to consider **stellar populations are not monochromatic** to explain the post-starburst preference of TDEs

• Partial stellar tidal disruption events can be very common events (although hard to observe!) and significantly affect the rates of total TDEs