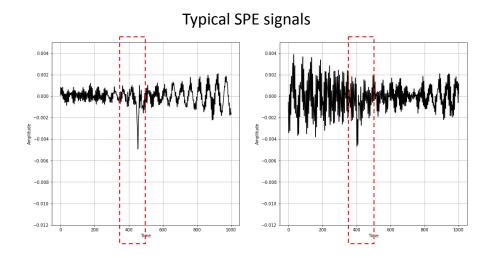
Time dispersion of the SPE signal

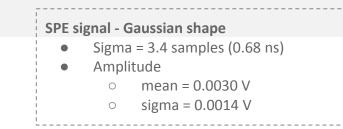
Presented by: Luan Gomes

Universidade Federal de Juiz de Fora (UFJF)

with Davide Pinci (INFN-Roma I), Mariana Migliorini and Rafael A. Nóbrega (UFJF)



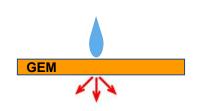
April 18, 2023

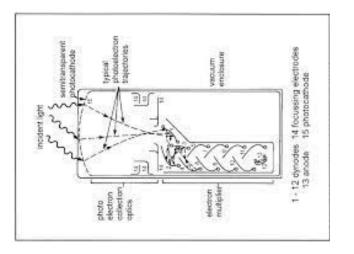

Previously...

• SPE characterization:

Previously...

SPE characterization:

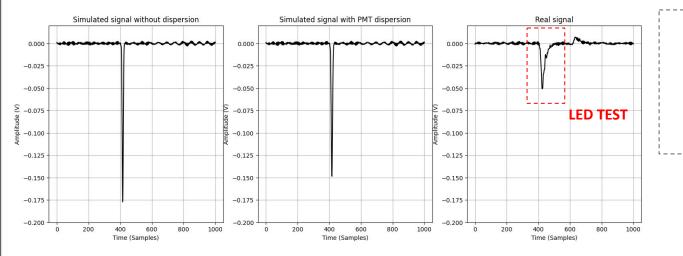

Sigma of the gaussian fits 60 **Typical SPE signal** 40 \rightarrow width of the SPE signal waveform 50 0.003 signal - sin1 - sin2 R2 = 0.94048 amp mean sigma 0.002 gauss 7.07684e-07 NOI = 39.46403, -0.00094, 0.00038 10.054 3.442 0.534 1PE =8.7793 -0.00296, 0.00138 0.001 30 40 2PE =2.16022, -0.00592, 0.00222 0.000 Ξ 3PE =-0.79727, -0.0088799999999999999, -0.00756 ę -0.001 Events 20 events 8 -0.002 Ā -0.003 -0.004 20 -0.005 10 -0.006 10 10 20 30 50 60 40 Time (samples) 10 14 -0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 sigma (sample) Peak amplitude (V)


Peak amplitude distribution

The proposed simulation is based on a sum of SPE:

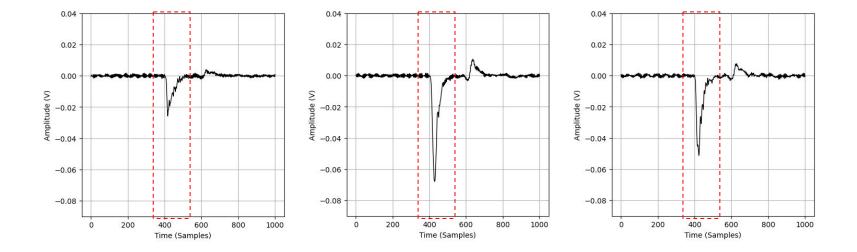
Dispersions:

- **PMT** (electron multiplication process)
- TPC electron longitudinal diffusion (z dependent)
- GEM time response (light production process)

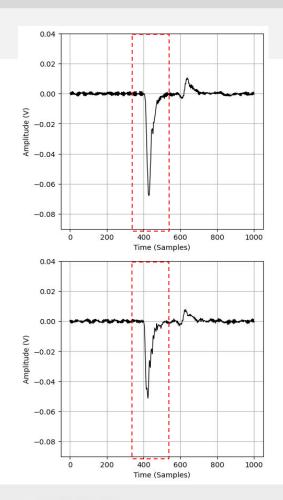


- PMT datasheet:
 - **T.T.S = 0.9 ns**

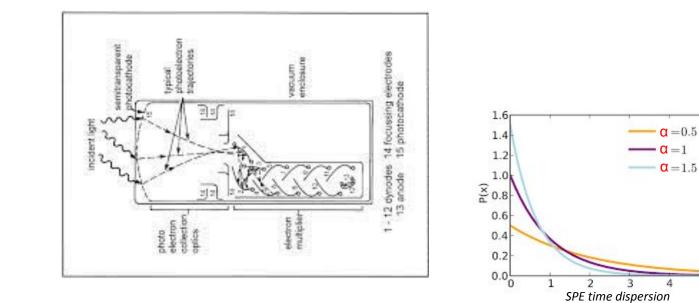
1 Sample = 0.2 ns


CHARACTERISTICS (at 25 °C)

Parameter		Min.	Typ.	Max.	Unit
Cathode sensitivity	Luminous (2856 K)	60	90	_	µA/Im
	Radiant at 420 nm	-	85	_	mA/W
	Blue sensitivity index (CS 5-58)	9	10.5	-	-
Anode sensitivity	Luminous (2856 K)	50	180	-	A/Im
Gain		-	2.0×10^{6}		
Anode dark current (aft	de dark current (after 30 min storage in darkness)		3	20	nA
Time response	Anode pulse rise time		1.5		ns
	Electron transit time	_	17		ns
	Transit time spread (T.T.S.)	—	0.9		ns
Pulse linearity at ±2 % deviation			30		mA

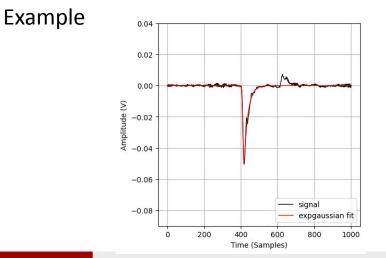

- .../PMT-Test-270922/BA1642/900V
- Used database:
 - LED emitting photons to a PMT
 - Sampling rate 1 GS/s
 - ~1000 acquisitions

Typical signals .../PMT-Test-270922/BA1642/900V



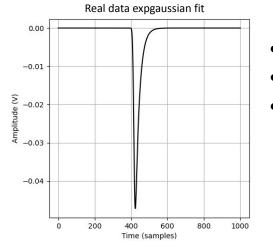
To start characterizing the dispersion, we can do a signal analysis based on:

- FWHM
- Peak
- Rise Time
- MSE



Approach idea: exponential dispersion $\implies \alpha e^{-\alpha x}$

Finding the best exponential parameter alpha $\implies \alpha e^{-\frac{1}{\alpha}x}$


- Selecting only signals from the dataset with peak mean of -0.05V
 - Fit each signal with a expgaussian and get the fit parameters mean

- FWHM = 23.121 Samples
- Peak = -0.048 V
- Rise Time = 8 Samples

Finding the best exponential parameter alpha $\implies \alpha e^{\neg \alpha x}$

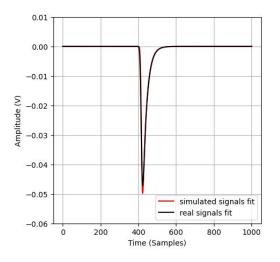
- Simulate a dataset scanning the α and N parameters
 - Compare with the expgaussian fit obtained from the real data

- FWHM = 26.862 Samples
- Peak = -0.0472 V
- Rise Time = 11 Samples

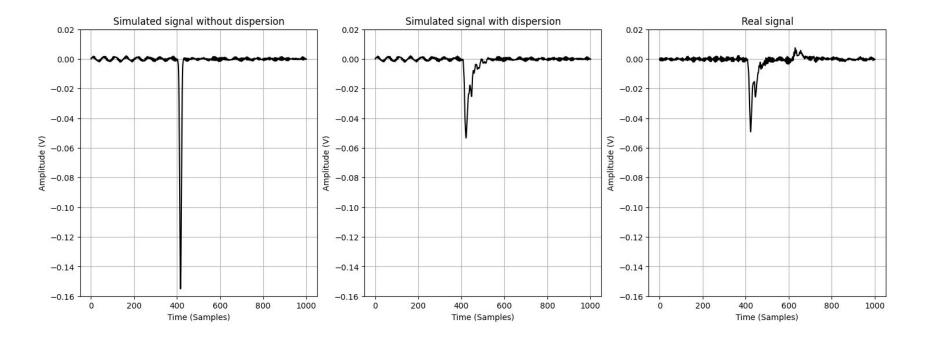
	a ₁	a ₂	a ₃	•••	a _n
N ₁	$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	a_{12}	a_{13}	•••	a_{1n}
N ₂	a_{21}	a_{22}	a_{23}	•••	a_{2n}
N_3	a_{31}	a_{32}	a_{33}	•••	a_{3n}
•	÷	•	:	۰.	:
N _m	a_{m1}	a_{m2}	a_{m3}	•••	a_{mn}

(N: Number of photoelectron signals)

Finding the best exponential parameter alpha $\implies \alpha e^{-\alpha x}$

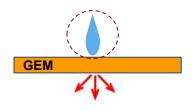

• For the minimum value of MSE:

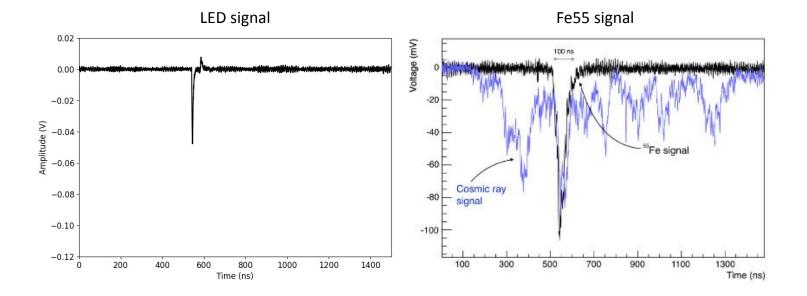
○ Alpha = 0.0422 ± 0.0021


- \circ N = 61.30 ± 1.49
- $\circ \Delta$ FWHM = 1.783 ± 0.467 Samples
- $\odot \Delta_{\text{Peak}} = 0.0016 \pm 0.0007 \text{ V}$
- $\circ \Delta$ Rise Time = 0.36 ± 0.62 ns
 - Simulated signals rise time = 9.6 ± 0.5 Samples
 - Real signals rise time = 11.4 ± 3.1 Samples

\circ MSE = 0.0000001938 ± 0.0000000197

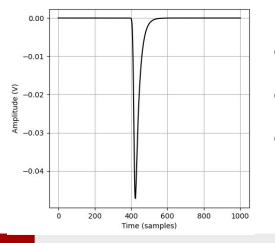
1 Sample = 0.2 ns


Comparison between simulated and real signal


Conclusions

Conclusions

- The presented analysis was for the led database signals
 - As a next step, we will do the same analysis for the Fe55 database
- The dispersion analysis is not considering the dispersion in the GEM
- We would like to know:
 - Is someone simulating the dispersion in the GEM for the photon generation branch?



Comparison between LED and Fe55 database signals

Finding the best exponential parameter alpha $\implies e^{-i\alpha x}$

- Selecting only signals from the dataset with peak mean of -0.05V
 - Fit each signal with a expgaussian and get the fit parameters mean
 - Create a fit with these values

- FWHM = 26.862 Samples
- Peak = -0.0472 V
- Rise Time = 11 Samples

The simulation results will be compared to this fit