CYGNO-30 Background Simulation

S.Torelli - E.Baracchini

Introduction

- Simulation done to study the gamma background in the CYGNO 30 detector
 - Background for dark matter searches (misidentification at low energy)
 - Background for the solar neutrino physics case
- CYGNO 30 (for current knowledge) will consist of 3x25 CYGNO 04 modules.
- All the modules are adjacent and enclosed in a common PMMA vessel
- CYGNO 30 will be realized in with ultrapure materials:
 - Every detector component \rightarrow Most radiopure material used up to now employed

Detector geometry

 Field cag	 BGEMs ←→	Vessel	
		Тор	view

Sensors	Lens	
0		val view
	° Det	tector sizes
	Cathodes	50 cm x 80 cm x 1 <i>cm</i>
	Rings inner	50 cm x 80 cm x 1 cm + 2 mm thickness
/essel	Rings spacer	Such that 32 rings fit equidistantly in 50 cm lenght
	GEMs	50cm x 80cm x 60 μm
	GEMs spacing	2 mm thickness
	Vessel	I cm with respect to the detector + I cm thickness
	Lens	I cm Ø x 2 mm 57.7 cm from the GEMs
iew	Sensors	10mm x 18mm x 1 mm 6 cm distance from Lens

Material radioactivity level

• Taken from the spreadsheet

GEM	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)	Ngen	t_eq (year)
U238	TREX https://link.sp	L	1.32E-02	0.008025	1.00E+06	2.98E+02
Th232	TREX https://link.sp	М	5.45E-03	0.008025	1.00E+06	7.25E+02
U235	TREX https://link.sp	М	2.80E-02	0.008025	1.00E+06	1.41E+02
K40	TREX https://link.sp	М	6.31E-02	0.008025	1.00E+07	6.26E+02
Co60	TREX https://link.sp	L	2.34E-03	0.008025	1.00E+07	1.69E+04
Cs137	TREX https://link.sp	L	1.56E-03	0.008025	1.00E+07	2.54E+04

Camera Lens (fused	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)	Ngen	t_eq (year)
U238	Haereus Suprasil: http	М	1.23E-04	3.843	3.00E+07	2.01E+03
Th232	Haereus Suprasil: http	М	4.07E-05	3.843	3.00E+07	6.09E+03
K40	Haereus Suprasil: http	М	3.10E-04	3.843	3.00E+07	8.00E+02

Acrylic	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)	Ngen
U238	SNO: https://www.radi	L	2.96E-04	2.01E+02	1.00E+07
Th232	SNO: https://www.radi	L	5.69E-05	2.01E+02	1.00E+07
K40	SNO: https://www.radi	L	7.12E-05	2.01E+02	1.00E+07

Copper Field Cage	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)	Ngen	t_eq (year)
238U	Cu from TREX: https://	L	1.20E-05	42.4915	5.00E+06	3.11E+02
232Th	Cu from TREX: https://	L	4.10E-06	42.4915	5.00E+06	9.10E+02
40K	Cu from TREX: https://	М	6.10E-05	42.4915	5.00E+06	6.12E+01
60Co	Cu from TREX: https://	L	2.40E-04	42.4915	5.00E+06	1.55E+01
137Cs	Cu from TREX: https://	L	2.90E-04	42.4915	5.00E+06	1.29E+01

DRIFT aluminum cathode

Loomba Cathode	Reference	Limit/Me	Activity (Bq/kg)	mass (kg)	Ngen	t_eq (year)
238U	https://arxiv.org/pdf/1	М	9.01E-01	0.00125	5.00E+05	1.41E+01
234U	https://arxiv.org/pdf/1	М	4.07E-05	0.00125	5.00E+05	3.11E+05

Cathode made by the same material of the field cage given the high U content

6				Th	is colun	nn
Senso	ors				for val	
	C11440-52U, board only	PRIME-BSI EXPRESS, Teledyne	orca-flash4.0, model C11440-22CU	Thorlabs Quantalux	PRIME-BSI EXPRESS, Teledyne - CMOS from unassembled camera	PRIME-BSI EXPRESS, Teledyne - CMOS without glass
Th-232						
Ra-228	1.03	1.3	2.1	0.26	5.20E-03	2.00E-03
Th-228	1.06	1.8	2.1	0.63	5.30E-03	1.80E-03
U-238						
Ra-226	1.15	1	1.8	0.21	6.80E-03	2.83E-03
Pa-234m	1.1	6	7	3	0.007	<15 mBq
U235	0.06	0.27	0.4	0.12	0.00091	<0.29 mBq
K-40	4.3	3.6	1.9	1.2	3.50E+00	9.00E-03
Cs-137	7	<32 mBq	0.09	<2.3 mBq	0.00042	<0.24 mBq
Co-60	<1.2 mBa	<17 mBa	<0.012 mBa	<5.5 mBa		

Radioactive decay simulation

• Physics list used: FTFP_BERT_HP: for "radiation protection and shielding application"

• For every detector element (GEMs, Cathodes, Rings, ecc...):

• For every contaminant (U238,U235,K40, ecc...):

- N iteration of:
 - I. Extraction of a random detector element (GEM_34, GEM_75)
 - 2. Extraction of a random point on the element volume
 - 3. Simulation of the whole decay chain of the element, taking into account also atomic excited states

Example of 10 U238 simulated on Cathodes

Summary of 10 U238 decays

Bi210:	10	Emean =	84.95 meV	(81.11 meV> 115.8 meV) mean life = 7.231 d
Bi210[46.539]:	10	Emean =	17.16 meV	(1.775 meV> 36.23 meV)
Bi214:	10	Emean =	214.2 meV	(97.88 meV> 310.7 meV) mean life = 28.71 min
	6	Emean =	1.426 eV	(418.5 meV> 2.137 eV)
Bi214[351.932]:	4	Emean =	1.042 eV	(834.8 meV> 1.235 eV)
Bi214[53.228]:	4	Emean =	221.7 meV	(146.9 meV> 445.9 meV)
> units Pa234:	1	Emean =	130.2 meV	(130.2 meV> 130.2 meV) mean life = 9.666 h
Pa234[166.300X]:	3	Emean =	93.88 meV	(63.62 meV> 149.4 meV)
Pa234[73.920X]:	10	Emean =	199 meV	(56.26 meV> 445.3 meV) mean life = 1.672 min
> gui Pb206:	10	Emean =	103.1 keV	(103.1 keV> 103.1 keV) stable
> trackinPb210:	10	Emean =	146.7 keV	(146.7 keV> 146.7 keV) mean life = 32.05 y
Pb214:	10	Emean =	112.3 keV	(112.3 keV> 112.3 keV) mean life = 39.04 min
Po210:	10	Emean =	3.484 eV	(1.935 eV> 4.935 eV) mean life = 199.6 d
Po214:	10	Emean =	4.375 eV	(931.4 meV> 15.03 eV) mean life = 237 us
Po214[1377.678]:	1	Emean =	9.393 eV	(9.393 eV> 9.393 eV)
Po214[1415.495]:	1	Emean =	1.24 eV	(1.24 eV> 1.24 eV)
Po214[1729.609]:	3	Emean =	4.752 eV	(3.948 eV> 5.639 eV)
Po214[1764.515]:	2	Emean =	3.551 eV	(1.188 eV> 5.913 eV)
Po214[2118.533]:	1	Emean =	2.994 eV	(2.994 eV> 2.994 eV)
Po214[2192.537]:	1	Emean =	2.916 eV	(2.916 eV> 2.916 eV)
Po214[2293.358]:	1	Emean =	1.846 eV	(1.846 eV> 1.846 eV)
Po214[2447.702]:	1	Emean =	837.8 meV	(837.8 meV> 837.8 meV)
Po214[609.316]:	6	Emean =	3.802 eV	(1.481 eV> 7.115 eV)
ver po218:	10	Emean =	100.9 keV	(100.9 keV> 100.9 keV) mean life = 4.469 min
pri Ra226: ess	s 10	Emean =	49.83 keV	(125.1 meV> 83.04 keV) mean life = 2310 y
Ra226[67.670]:	rea 4	Emean =	81.86 keV	(81.86 keV> 81.86 keV)
Rn222:	10	Emean =	86.3 keV	(86.3 keV> 86.3 keV) mean life = 5.516 d
USeTh230:	1LO 10 C	Emean =	49.88 keV	(82.6 meV> 83.13 keV) mean life = 1.089e+05 y
Th230[53.227]:	4	Emean =	82.21 keV	(82.21 keV> 82.21 keV)
eveTh234:	10	Emean =	35.91 keV	(72.03 meV> 71.83 keV) mean life = 34.77 d
Th234[49.550]:	5	Emean =	70.99 keV	(70.99 keV> 70.99 keV)
U234:	10	Emean =	9.435 eV	(420.6 meV> 15.02 eV) mean life = 3.544e+05 y
U234[1496.111]: ple	S 1	Emean =	290.5 meV	(290.5 meV> 290.5 meV)
U234[1723.402]:	met 1 y	Emean =	645.6 meV	(645.6 meV> 645.6 meV)
U234[926.720]:	nOfF 1	Emean =	743.7 meV	(743.7 meV> 743.7 meV)
U238:	10	Emean =	0 eV	(0 eV> 0 eV) mean life = 6.45e+09 y
orealpha: Ido	80	Emean =	5.357 MeV	(4.149 MeV> 7.687 MeV) stable
anti_nu_e:	60	Emean =	610.5 keV	(2.83 keV> 2.145 MeV) stable
abortCerrent	7815	Emean =	4.735 keV	(0.000169 meV> 2.067 MeV) stable
gamma:	44	Emean =	539.1 keV	(2.726 keV> 2.448 MeV) stable

Spectra production and normalization

• Given the computational time of the chain simulations, for every detector elements:

- I.000.000 primary nuclides decays have been generated for U238, U235, Th232
- I0.000.000 primary nuclides decays have been generated for K40, Co60, Cs137

• For each particle entering the gas volume the information saved are:

- Particle name
- Total energy deposit in the single volume
- The number of the volume in which the energy is deposited
- The primary nucleus
- X,Y,Z of the vertex

 Final spectra produced taking into account we can reconstruct the total energy of the electron and the impact point

- Each histogram scaled by the quantity:
- N_{ev} is the number of events
- \bullet A is the activity of the element
- \bullet M is the total mass of the detector component

37 keV electron in the final spectrum

$$N = \frac{1}{N_{ev}} \cdot A\left[\frac{dec}{s \cdot kg}\right] \cdot M[kg] \cdot 3.15 \cdot 10^7 \left[\frac{s}{y}\right]$$

{"Cathodes",809.7}, {"GEMs",18.75}, {"Lens",0.4995},
{"Rings",1114.74}, {"Sensors",0.1392}, {"Vessel",1102.24}

• List of each component total mass in Kg

Final gamma spectrum

Full range: $2,40 \cdot 10^6 ev/y$ I-20keV: $1,34 \cdot 10^6 ev/y$ IC

10-250keV: 1,82 \cdot 10⁶ ev/y

Component with highest contribution

Cathodes_Co60 2.01417e+06 Cathodes_Cs137 2.81963e+06 Cathodes_K40 469016 Cathodes_Th232 420831 Cathodes_U238 1.54696e+06 GEMs_Co60 177299 GEMs_Cs137 129157 GEMs_K40 6.14066e+06 GEMs_Th232 4.50413e+06 GEMs_U235 4.58431e+07 GEMs_U238 1.46709e+07 Lens_K40 45.0426 Lens_Th232 12.2703 Lens_U238 33.3739 Rings_Co60 5.03953e+06 Rings_Cs137 7.83959e+06 Rings_K40 1.36895e+06 Rings_Th232 1.00345e+06 Rings_U238 3.73395e+06 Sensors_Cs137 8.82239 Sensors_K40 13551.3 Sensors_Th232 409.117 Sensors_U235 67.3543 Sensors_U238 487.388 Vessel_K40 18275.9 Vessel_Th232 108546 Vessel_U238 732698

Cathodes_Co60_cut 104888	
Cathodes_Cs137_cut 87402 Cathodes_K40_cut 4574.1 Cathodes_Th232_cut 6504.43 Cathodes_U238_cu	19549.7
GEMs_Co60_cut 17728.1 GEMs_Cs137_cut 7701.26 GEMs_K40_cut 90203.1 GEMs_Th232_cut 116145	
GEMs_U235_cut 1.06274e+06 GEMs_U238_cut 298142 Lens_K40_cut 14.1271 Lens_Th232_cut 5.86942	
Lens_U238_cut 16.4283	
Rings_Th232_cut 15185.4 Rings_U238_cut 47713.7 Sensors_Cs137_cut 4.75606 Sensors_K40_cut 42	77.43
Sensors_Th232_cut 196.248 Sensors_U235_cut 45.5946 Sensors_U238_cut 236.636 Vessel_K40_cut	1586.43
Vessel_Th232_cut 37692 Vessel_U238_cut 183979	

No cuts

Cuts

Conclusions

- The gamma background of CYGNO 30 has been studied supposing to build the detector with the most pure material used up to now and the current future geometry
- The total spectrum have been produced and show a rate of electron recoil due to gamma of $2 \cdot 10^6$ events/y in the full energy range.
- The most critical components of the detector are mainly the GEMs, followed by the rings and the vessel
- The interaction point studies suggest a fiducial cut of 5 mm in the X-Y plane, 4 mm from Cath, and 1 mm from GEM
- Additional cut would reduce linearly the amount of signal and bkg (?). Most optimized cut (?)
- For the future study the NID geomety:
 - Same diffusion level of 50 cm ED with 1.5 m NID \rightarrow cubic detector geometry