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Data Science, Statistics, Machine Learning, AI, . . .

Statistics

• Statistics is the discipline that studies
the collection, analysis, interpretation,
presentation, and organization of data.

• Classical statistical methods:

• Point estimation
• Confidence intervals
• Hypothesis testing
• Statistical models for regression and classification
• Likelihood-based inference
• Bayesian inference
• Multivariate methods
• . . .

2



• Leo Breiman (“Statistical Modeling: The Two Cultures”, Statistical Science, 2001)
described “two cultures”:

1. “generative” modeling culture which seeks to develop stochastic models
that fit the data, and then make inferences about the data-generating
mechanism based on the structure of those models. Implicit is the notion
that there is a true model generating the data, and often a “best” way to
analyze the data.

2. “predictive” modeling culture which focuses on predictions, ignoring the
underlying data generating mechanism, and discuss only accuracy of
predictions made by different algorithms.

• According to Breiman “Statistics starts with data. Think of the data as being
generated by a black box [. . . ]”

Two main goals can be pursued when analyzing data:

• Prediction, i.e to be able to predict what the responses are going to be to
future input variables;

• Inference, i.e to infer how nature is associating the response variables to
the input variables.
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Machine Learning

• Machine learning is the study of how
computer algorithms can improve
automatically through experience and by
the use of data.

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E. – Tom Mitchell (1997)

• In the context of predictive modelling, the difference between machine learning
and statistical learning is blurred.

• Machine learning (ML) tends to be focused more on developing efficient
algorithms that scale to large data in order to optimize a predictive model.

• Statistical learning (SL) generally pays more attention to the probabilistic
structure of the model in order to provide an assessment of the uncertainty.
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• Data Science is a vaguely defined, constantly
changing, cross-disciplinary field.
From a statistician point of view, data science
can be seen as a broader view of statistics.

When physicists do mathematics, they
don’t say they’re doing “number science”.
They’re doing math. If you’re analyzing
data, you’re doing statistics. You can call
it data science or informatics or analytics
or whatever, but it’s still statistics.
— Karl Broman (U of Wisconsin)

• Big Data refers to data sets that are too large
or complex to be dealt with by traditional
data analysis software.
Big data are usually described in terms of
three key concepts: volume, variety, and
velocity.
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Artificial Intelligence

• Artificial Intelligence (AI) refers to the
ability of digital machines to perform
tasks that typically require human
intelligence.

Can machines think?
– Alan Turing (1950)

• AI can be seen as a branch of CS, and in the years since its introduction in 1950s
has experienced several waves of optimism followed by disappointment and the
loss of funding (aka “AI winter”), followed by new approaches, success and
renewed funding.

• There is a large debate and no single
definition of the AI field that is universally
accepted.

• In a broad sense, AI is an interdisciplinary
science with multiple approaches, where
advancements in ML and Deep Learning (DL)
play a central role.

• AI encompasses various subfields, including
ML, SL, and DL. 6



Supervised Learning

• Suppose we collected data for a sample of n observations. The training set is
made of pairs of input and output variables:

Dtrain = {xi, yi}n
i=1

• Assume there exists a dependency between them, so the output yi can be
expressed as a function of the input variables xi and some other unobservable
(latent) variables zi:

yi = f (xi, zi)

• The aim of supervised learning is to fit a model to learn the mapping from the
observable input to the output

ŷi = g(xi | θ)
where g(.) is a statistical model and θ the unknown parameters.

• The learning task corresponds to finding the parameters that minimize a loss
function measuring the deviation of our prediction ŷi from the observed output
yi:

θ̂ = argmin
θ

n∑
i=1

L(yi, ŷi) = argmin
θ

n∑
i=1

L(yi, g(xi | θ))
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• Different supervised learning algorithms differ in the models or the loss
functions they assume, or the procedures they use in optimization.

• In regression problems

• the output yi is a numerical value (quantitative response)
• g(.) is a regressor function
• loss is often the squared error, so the aim is to find the best θ that

minimize the fitting error.

• In classification problems

• the output yi is a discrete label (qualitative response)
• g(.) is a discriminant/classification function
• if the loss function is the Zero-One loss the aim is to minimize the total

number of misclassifications.
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• Popular supervised learning models are:

• Linear regression

• Logistic regression

• Generalized Linear Models (GLM)

• Generalized Additive Models (GAM)

• Linear Discriminant Analysis (LDA) and
Quadratic Discriminant Analysis (QDA)

• Naive Bayes methods

• Mixture models (e.g. Gaussian mixtures)

• Decision Trees (Regression and Classification Trees)

• Ensemble methos (Bagging, Random Forests, Boosting)

• Support Vector Machines (SVM)

• Neural Networks (NN) and
Deep Learning (DL)
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Unsupervised Learning

• Suppose we collected a dataset Dtrain = {xi}n
i=1 composed of only a set of

variables drawn from some unknown probability/density function

xi ∼ p(x)

• In unsupervised learning for each case only the predictors vector xi is observed,
but there is no response yi (i = 1, . . . , n). Thus, we lack a response variable that
can supervise our analysis.

• The aim is to estimate a model with parameters θ

xi ≈ q(x | θ)
where q(.) is some working distribution depending on parameters θ .

• The learning task corresponds to finding the parameters that makes q(.) as
close as possible to the unknown p(.) and from that understand the
relationships between the variables or between the observations.

• Cluster analysis is a typical unsupervised learning task: look for the presence of
one or more distinct groups of observations with no explicit assessment
criterion because truth is not known (e.g. market segmentation to detect groups
of customers).
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Semi-supervised Learning

• Many problems fall naturally into the supervised or unsupervised learning
paradigms.
However. . . sometimes the question is less clear-cut.

• There can be situations where for a subset of m < n observations we have
information on both the predictors and the response variable, and for the
remaining n − m observations we have only predictor measurements but no
response measurement.

• Such a scenario is referred to as semi-supervised learning.
11



Reinforcement Learning

• Reinforcement learning focuses on training agents to make sequential decisions
in an environment to maximize a cumulative reward.

• In reinforcement learning, an agent interacts with an environment, learns from
its actions, and adjusts its behavior to achieve a specific goal or objective.

• Application domains:

• recommendation systems (e-commerce websites, streaming services, . . . )
• robotics
• game playing
• autonomous vehicles
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Aims of statistical/machine learning

• In general, suppose that we have observed

• a quantitative response (aka dependent variable, output, target, . . . )
denoted as Y, and

• a set of p predictors (aka independent variables, covariates, features, . . . )
collected in the input vector X = (X1, X2, . . . , Xp)⊤.

• Further, assume there exists some relationship between Y and X, i.e.

Y = f (X) + ϵ

where

• f () is unknown and represents the systematic information that X provides
about Y;

• ϵ is a random error term, which captures measurement errors and other
discrepancies, independent of X and with zero mean.

• There are two main reasons to estimate f ():

1. inference

2. prediction
13



Inference

• In descriptive or explanatory modelling we want to understand how Y changes
as a function of (X1, . . . , Xp).

• Interesting questions:

• Which predictors are associated with the response?

• What is the relationship between the response and each predictor?

• What is the functional form of the relationship between Y and each
predictor?

• There exists any cause-and-effect relationship?
(causal inference)
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Prediction

• In predictive modelling the goal is to predict the response variable based on
the observed values of the predictors:

Ŷ = f̂ (X)

• f̂ () is often treated as a black box: we are not interested in knowing the exact
form of f (), provided that it yields accurate predictions for Y.

• The prediction error of estimating Y using Ŷ can be decomposed as

Y − Ŷ = f (X) + ϵ − f̂ (X) = (f (X) − f̂ (X)) + (Y − f (X))

• Suppose that both f () and X are fixed, then recalling that E[ϵ] = 0, the expected
prediction error (under squared error loss) is given by

E[(Y − Ŷ)2] = E[(f (X) + ϵ − f̂ (X))2]

= E[(f (X) − f̂ (X))2] + E[ϵ2] + 2 E[ϵ (f (X) − f̂ (X))]

= (f (X) − f̂ (X))2︸            ︷︷            ︸
reducible error

+ V[ϵ]︸︷︷︸
irreducible error
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Estimating f ()

• Estimation (or learning in ML) is the process of applying a statistical/machine
learning method to the training data to estimate the unknown function f ().

• Main goal: estimate f () with the aim of minimizing the reducible error.

• The irreducible error provides a lower bound on the accuracy of our prediction
for Y, and it is almost always unknown in practice.

• Several approaches are available, both parametric and non-parametric.
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Parametric methods

A two-step model-based approach:

1. Select the functional form, or shape, of f ().
For example, the linear model assumes that f () is linear in X:

f (X) = β0 + β1X1 + β2X2 + . . . + βpXp

2. Select a procedure that uses the training data to fit or train the model.
For example, in the linear model case we only need to estimate the parameters
(β0, β1, β2, . . . , βp). A popular approach is (ordinary) least squares (OLS), but
many other exists (maximum likelihood, regularized ML, Bayesian estimation,
. . . ).

• This model-based approach is called parametric because it reduces the problem
of estimating f () down to one of estimating a set of parameters (the coefficients
of the model).

Pros: generally is much easier to estimate a set of parameters than it is to fit an
entirely arbitrary function f ().

Cons: the selected model can be a poor approximation of true unknown form of f ().
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Non-parametric methods

• Non-parametric methods do not make explicit assumptions about the functional
form of f ().

• They try to estimate f () getting as close to the data points as possible without
being too rough or wiggly.

Pros: avoid the assumption of a particular functional form for f (), so they have the
potential to accurately fit a wider range of possible shapes for f ().

Cons: a large number of observations is required to accurately estimate f ().
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Trade-off between model interpretability and flexibility

• If we are mainly interested in explanatory inference, then simple models
(e.g. Linear Models, Logistic Regression) are much more interpretable than
black-box models (e.g. Random Forest, SVM, Neural Networks).

• Flexible models allow to fit many different possible functional forms for f (), but
usually require estimating a larger number of parameters.

• In general, as the flexibility of a model/algorithm increases, its interpretability
decreases.

• Overfitting is the main risk, i.e. to follow the observed data (including the
error/noise component) too closely.

• If we are only interested in prediction, then the interpretability of the predictive
model may be simply not of interest.

• Flexible models may provide good fit but there is the risk of overfitting.

• Models involving fewer variables are often preferred over more complicated
models involving several variables or features.
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Interpretability vs flexibility using different statistical/machine learning methods
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Assessing model accuracy

• Suppose we have fit a model f (x) to some training data Dtrain = {(xi, yi)}n
i=1,

and we wish to assess its performance.

• Compute the average squared prediction error over Dtrain:

MSEtrain =
1
n

∑
i∈Dtrain

[yi − f̂ (xi)]2

• Since the same data is used both for “learning” and for “evaluating” the fit
of a model, this gives an optimistic evaluation of model accuracy.

• If used for selecting the complexity of a statistical model, it is biased
toward overfitting models.

• Compute the MSE on a test set Dtest = {(xi, yi)}m
i=1, i.e. a fresh dataset not used

for parameters estimation:

MSEtest =
1
m

∑
i∈Dtest

[yi − f̂ (xi)]2

• This is a more realistic measure of how accurately an algorithm is able to
predict outcome values for previously unseen data.
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Models: 1) true model —— 2) linear regression fit —■— 3) smoothing spline fit with
medium flexibility —■— 4) smoothing spline fit with high flexibility —■—

Accuracy measure: (i) training MSE —— (ii) test MSE —— (iii) irreducible MSE –––
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Bias-Variance trade-off

• The expected test error for a new observation value x0 can always be
decomposed as

E[y0 − f̂ (x0)]2 = V [̂f (x0)] + B [̂f (x0)]2 + V[ϵ]
where

• V [̂f (x0)] is the variance expressing the amount by which f̂ () would change
if we estimated it using a different training dataset;

• B [̂f (x0)] is the bias expressing the error that is introduced by
approximating the data distribution by a statistical model;

• V[ϵ] is the irreducible error.

• The expected test error can never be smaller than the irreducible error.

• In general, more flexible statistical methods have higher variance and smaller
bias. On the contrary, simpler models have smaller variance but higher bias.

• To minimize the expected test error, we need to select a statistical/machine
learning method that simultaneously achieves low variance and low bias.
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MSE and the bias-variance trade-off
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Classification accuracy

• Suppose that we seek to estimate f () on the basis of the training observations
Dtrain = {(xi, yi)}n

i=1, where in this case yi ∈ {C1, C2, . . . , CK} is the class or label
associated with the ith observation.

• Training classification error rate is the proportion of misclassified observations,
i.e.

CEtrain =
1
n

∑
i∈Dtrain

1(yi , ŷi)

where
• ŷi is the predicted class label for the ith observation using f̂ ();
• 1(yi , ŷi) is the indicator function that returns 1 if yi , ŷi and 0 otherwise.

• The test classification error rate associated with a set of test observations
Dtest = {(xi, yi)}m

i=1 is given by

CEtest =
1
m

∑
i∈Dtest

1(yi , ŷi)
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The Bayes Classifier

• The test error rate CEtest is minimized, on average, by a very simple classifier
that assigns each observation to the most likely class, given its predictor values.

• According to the Bayes classifier, a test observation with predictor vector x0
should be assigned to the class Ck (with k = 1, . . . ,K) for which

Pr[Y = Ck | x0] is maximum

• The Bayes error rate is the lowest possible test error rate produced by the Bayes
classifier:

• error rate at x0 is 1 −maxk Pr[Y = Ck | x0].

• overall Bayes error rate is 1 − E [maxk Pr[Y = Ck | X]]

The Bayes error rate is analogous to the irreducible error for classification tasks.

• The Bayes decision boundary defines the regions in which a test observation
will be assigned to one of the K classes.

29



Two-class simulated dataset. The dashed line represents the
Bayes decision boundary with Bayes error rate ≈ 13%

• For real data, we do not know the conditional distribution of Y given X, and so
computing the Bayes classifier is impossible.
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Loss functions

• In supervised machine learning problems, a training set of n data points is
available, Dtrain = {xi, yi}n

i=1, where xi represents the p features on the ith
observation and yi represents the value of the response variable.

• The main goal is to build a model whose predictions ŷi are as close as possible
to the true response values yi.

• A loss function aims at measuring model’s prediction error:

L =
n∑

i=1

L(yi, ŷi)

• Properties of a loss function:

• Continuous and differentiable everywhere.
• Convex, i.e. only one global minimum point exists, so optimization methods

like gradient descent are guaranteed to return the globally optimal
solution. In practice, this is hard to achieve, and most loss functions are
non-convex (i.e. they have multiple local minima).

• Symmetric, i.e. the error above the target should cause the same loss as
the same error below the target.

• Computationally efficient, i.e. fast and scalable. 31



Loss Functions and Maximum Likelihood

• Many of the loss functions used in ML are derived from the maximum likelihood
principle.

• In maximum likelihood estimation (MLE) we are trying to fit a model with
parameters θ that maximizes the probability of the observed data given the
model: Pr(D|θ).

• MLEs are computed as

θ̂ = argmax
θ

log Pr(D|θ)

• Thus, the loss function for a random sample D = {xi, yi}n
i=1 can be defined as

L = − log Pr(D|θ) = −
n∑

i=1

log Pr(xi |θ)

so L(yi, ŷi) = − log Pr(xi |θ).

• Because negative logarithm is a monotonically decreasing function, maximizing
the likelihood is equivalent to minimizing the loss.
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Loss Functions in Regression Problems

Squared loss

• The squared loss is defined as

Lsq (yi, ŷi) = (yi − ŷi)2

• This is the loss function used in ordinary least squares (OLS), the most common
method for solving linear regression problems.

• Pros:

• Continuous and differentiable everywhere.
• Convex (has only one global minimum).
• Easy to compute.
• Obtained assuming a Gaussian distribution for the errors.

Cons:

• Sensitive to outliers.
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Absolute loss

• The absolute loss is defined as

Labs (yi, ŷi) = |yi − ŷi |
• Pros:

• Not overly affected by outliers.
• Easy to compute.
• Obtained assuming a Laplace distribution for the errors.

Cons:
• Non-differentiable at 0, which makes it hard to be used by derivative-based

optimization methods, such as gradient descent.
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Huber loss

• The Huber loss is a combination of squared loss and absolute loss and it is
defined as

LHuber (yi, ŷi) =
{

1
2 (yi − ŷi)2 if |yi − ŷi | ≤ δ

δ ( |yi − ŷi | − 1
2δ) if |yi − ŷi | > δ

for some hyperparameter δ > 0.

• Pros:

• Continuous and differentiable everywhere.
• Less sensitive to outliers than squared loss.

Cons:

• Slower to compute.
• Requires tuning of the hyperparameter δ .
• Does not have a maximum likelihood interpretation.
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Loss Functions in Binary Classification Problems

Zero-One loss

• The simplest loss function is the zero-one loss function defined as

L01 (yi, ŷi) = 1(yi , ŷi)
where yi ∈ {0,1} is the observed class, ŷi the corresponding predicted class, and
1() the indicator function that returns 1 if its argument is true, and 0 otherwise.

• By encoding yi ∈ {−1, + 1}, the zero-one loss can also be defined as

L01 (yi, si) = 1(yisi < 0)
where si ∈ R is the linear score s.t. Pr(yi = +1) = 1/(1 + exp(−si)).

• This loss function counts the number of prediction errors made by the classifier
(misclassification error).

• Pros:

• Easy to compute.

Cons:

• Non-differentiable and non-continuous.
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Log loss or Cross-entropy loss

• Denote the binary response as yi ∈ {0,1} and the probability of positive case as
Pr(yi = 1) = pi, then the log loss is defines as

Llog (yi, pi) = −yi log(pi) − (1 − yi) log(1 − pi)

• Equivalently, denoting the binary response as yi ∈ {−1, + 1} and si ∈ R the linear
score, the log loss can also be defined as

Llog (yi, si) = log(1 + exp(−yisi))

• Pros:

• Continuous and differentiable everywhere.
• Convex (has only one global minimum).
• Obtained assuming a Bernoulli distribution for the response variable.
• Loss function used in logistic regression.
• Easily extended to multi-class classification problems.

Cons:

• Symmetric.
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Hinge loss

• For the binary response yi ∈ {−1, + 1}, the hinge loss is defined as

Lhinge (yi, si) = max(0, 1 − yisi)

• Hinge loss is employed by support vector machines (SVM) to obtain a classifier
with “maximal margin”:

• when yi and si have the same sign (a correct prediction) and si ≥ 1 the loss
is 0;

• when yi and si have opposite signs, the loss increases linearly with si, and
similarly if si < 1, even if it has the same sign (a correct prediction, but not
by enough margin).

Exponential loss

• For the binary response yi ∈ {−1, + 1}, the exponential loss is defined as

Lexp (yi, si) = exp(−yisi)

• A more aggressive loss function which grows exponentially for negative values
and is thus very sensitive to wrong predictions.

• Exponential loss is employed by AdaBoost classifier.
39
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Model validation

• Often models require the tuning of hyper-parameters (k in KNN, number of
components in GMM, smoothing parameter, lasso and/or ridge parameters,
number of hidden layers and number of nodes in NNET, etc.).

• Sometimes we have no test data available for estimating MSE, classification
error, etc.

• In all these cases, a separated validation dataset Dval = {(xi, yi)}v
i=1 should be

used.

• However, instead of setting aside a validation set, it is preferable to use
resampling methods.

• No free lunch theorem: no method/algorithm/model dominates all others over
all possible datasets.

• Realistically, we should decide for any given set of data which method produces
the best results.

• This is the most challenging part of statistical/machine learning in practice.
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Resampling

• Resampling methods are a fundamental tool in modern statistics.

• They involve repeatedly drawing samples from a training set and refitting a
model of interest on each sample to obtain additional information about the
fitted model.

• They can be computationally expensive, because the same statistical model
must be fitted multiple times using different subsets of the training data.

• Goals

• Model assessment (evaluating model’s performance)

• Model selection (selecting the level of flexibility of a model,
i.e. hyperparameters tuning)

• Model inference (provide a measure of accuracy of a parameter estimate or
of a given statistical/machine learning method)
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• Several possible performance metrics can be adopted.

• For regression problems, the error is usually measured by the root mean square
error:

RMSE =
√

MSE =

√
1
n

∑
i
(yi − f̂ (xi))2

or directly using the MSE.

• For classification problems, the error can be measured by the classification
error:

CE =
1
n

∑
i

1(yi , ŷi)

Many other measures are available: sensitivity/specificity, ROC-AUC,
precision/recal, F-score, log-loss or cross-entropy, Brier score, etc.

• If a validation set is not available, an estimate of the true error must be
obtained by resampling methods.
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Cross-validation

• Cross-validation is a widely used resampling approach for estimating the
performance of a statistical/machine learning model/algorithm.

V-fold cross-validation
The set of training observations is randomly splitted into V parts or folds. The model
is trained using all but the vth fold, then the remaining vth fold is used as validation
set. This is done in turn for each fold v = 1, . . . , V, and then the results are combined.

10-fold cross-validation scheme

• When V = n, the procedure is called leave-one-out cross-validation (LOOCV),
because we leave out one data point at a time.

• Leave-one-out CV (LOOCV) follows the same algorithm outlined above by
removing one observation at time (i.e. set V = n).
LOOCV has the potential to be computationally expensive because the model
has to be fit n times.

• Repeated V-fold CV creates multiple versions of the folds and aggregates the
results. Research indicates that this procedure can be used to effectively
increase the precision of the estimates while still maintaining a small bias.

• Leave-group-out or Monte-Carlo CV (LGOCV) repeatedly splits the data into
training and validation sets. Usually, 70–80% of the sample is used for training.

Bias-variance trade-off for V-fold CV

• LOOCV has less bias than V-fold CV, but much
higher variance.

• LGOCV has less variability than V-fold CV, but
larger bias.

• V-fold CV often gives more accurate estimates
of the test error rate than LOOCV.

• Empirically it has been shown that V-fold CV with V = 5 or V = 10 yields test
error rate estimates that have neither excessively high bias nor high variance.
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Bootstrap

• The bootstrap is a flexible and powerful statistical tool that can be used to
quantify the uncertainty associated with a given estimator (e.g. standard errors
or confidence intervals for regression coefficients) or the predictions provided
by a statistical/machine learning method.

• Bootstrap takes random samples with replacement of the same size as the
original data set.

• Since sampling is made with replacement, some observations may be selected
more than once and each observation has a 63.2% chance of showing up at least
once.

The probability for an observation of not being selected in any of n draws
from n samples with replacement is (1 − 1/n)n.
Then limn→∞ (1−1/n)n = e−1 ≈ 0.368, and the probability of being selected
at least once is 1 − e−1 ≈ 0.632.

• The observations not selected (approximately 1/3 of the sample) are usually
referred to as the out-of-bag observations.
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Bootstrap algorithm for a classification task

1. Create a bootstrap sample by random sampling with replacement;

2. Fit a classifier using the bootstrap sample as training set;

3. Predict out-of-bag observations to get bootstrap classification error;

4. Repeated steps 1-3 multiple times (usually 30 − 100) and then combine the
results.

Bias-variance trade-off for bootstrap

• The bootstrap estimates of error rate have less variability than V-fold CV, but
larger bias (similar to 2-fold CV).
If the training set size is small, this bias may be problematic, but will decrease
as the training set sample size becomes larger.

• The “632” bootstrap method tries to reduce the bias by creating a performance
estimate that is a combination of the simple bootstrap estimate and the
estimate from predicting the training set:

(0.632 × bootstrap error rate) + (0.368 × training error rate)
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One standard error rule

• Instead of selecting the model with the “best” tuning parameter value, other
schemes for selecting a single model can be used.

• A popular choice is the so-called “one standard error rule”:

“all else equal (up to one standard error), go for the simpler (more regular-
ized/parsimonious) model”

• In practice:

• the model with the best performance value is identified;

• an estimate of the standard error of performance is computed by a
resampling method;

• the final model is the simplest model whose estimated performance is
within one standard error from the best model performance.
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Statistical/Machine Learning Pipeline
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Conclusion

• Machine Learning and Statistical Learning play a vital role in the broader field of
Artificial Intelligence.

• They enable computers to learn from data, make predictions, and solve complex
tasks without being explicitly programmed for a specific task.

• These techniques have widespread applications across various domains,
revolutionizing industries and improving decision-making processes.
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