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ARTIFICIAL NEURAL NETWORKS
• the most popular approach to machine learning in the last decade  

• an ANN is a mathematical model able to approximate with high precision generic multidimensional functions:


• very shallow analogy with biological neural networks


• more precisely defined as a composition of functions (layers) connected in chains described  
by a graph (ex: a feed-forward ANN described as a direct acyclic graph)
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• connectionist computational approach: collective actions performed in parallel by simple computational units (neurons)

• learns as an adaptive system: the network structure dynamically change during a training phase based on a set of examples that 

flow through the network during the training steps

• non linear response obtained by non linear neuron outputs

• hierarchic representation learning obtained by implementing complex multilayered topologies (DNN)

f : Rn → Rm: y = f(x) ⟶ ANN(x) = ̂y



• receives in input n signals xi and outputs y given as 
composition of a synaptic function:


• and an activation function  
(for example a step function):

ARTIFICIAL NEURON MODEL: TRESHOLD LINEAR UNIT
• artificial neuron (McCulloch-Pitts (1943) and Rosenblatt (1962)):
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Input

Weights

Synaptic 
sum

Activation

Output

̂y = a(z) = a(w0 + xtw)

w =
w1
⋮

wm

x =
x1
⋮
xm

a(z) = {
1 if wtz ≥ − w0

0 if wtz < − w0

z = w0 +
n

∑
i=1

wixi = w0 + wtx

a single layer of TLU with step 
activation can only learn to 
solve problems with linearly 

separable classes
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Il Perceptron (Rosenblatt, 1962)
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2 classi linearmente separabili

Con una TLU è possibile 
risolvere i problemi in cui 
le classi siano 
linearmente separabili.

E se le classi sono 
più di 2? x1

x2

extension to multilayers with non-linear activations allows to effectively learn complex hypersurfaces



a1(z1)

a1(z2)

a1(z3)

a1(zd1)
input

hidden layer

output

MULTILAYER PERCEPTRON (FEED-FORWARD NN)
• the most classical and simplest DNN architecture (FFNN or MLP)
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• neurons organised in consecutive layers:  input, hidden-1, ... , hidden-K, output

• only connections of neurons of a given layer towards the next are possible: acyclic direct graph

• all possible connections are present (dense layers)

≡

FFNN 
acyclic direct 

graph

zi = w(1)
0i +

m

∑
j=1

xjw(1)
ji

̂yi = a2 w(2)
0i +

d1

∑
j=1

a1(zj)w(2)
ji

• NN behaviour determined by: 

• network topology (#layers, size of each layer, …)

• weights wij

• activation function of each layer

MLP with 1 hidden layer

synaptic sum

a1(zi) activation
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non-linear activations allows to learn complex and non linear patterns …

a(z) = z a(z) = max[0,z]a(z) = tanh[z]

Linear Tanh ReLU



ACTIVATION FUNCTIONS FOR THE HIDDEN LAYERS
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In general, any continuous and differentiable function would works. In practice some functions are better than 
others …

should not be used in general for dense and convolutional layers: 

- gradient vanishes away from x=0 → vanishing gradient problem

- sigmoid has output not centered in zero → affects SGD dynamic (zig-zag instabilities)

- used in RNN to control gated I/O and often in dense layers in GAN to avoid sparsity 

the most popular:

- allows non linear dynamics 

- faster convergence of the NN because doesn’t saturate

- no vanishing gradient problem

- induce gradient sparsity (0 output for negative values, i.e. fewer active neurons). This 

can be an advantage or an issue depending on the specific ANN architecture and task. 
In case of problems can be replaced with alternatives:



POPULAR ACTIVATION FUNCTIONS FOR THE OUTPUT LAYER
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Sigmoid: typically used in binary classification problems (2 classes) with a single output 
neuron, or multilabel (multiple mutually inclusive classes) or sometime when the output 
features are numbers in (0,1)

Softmax: Rn→ [0,1]n

- soft version of the argmax output ( )

-often used in multi-class classification tasks (with mutually exclusive classes)

-makes output a convex sum:  and  interpretable as a probability

y = arg max[z]

yi ∈ (0,1) ∑
i

yi = 1

yi =
ezj

∑n
j=1 ezj

Identity (linear): standard choice for regression tasks



FFNN AS UNIVERSAL APPROXIMATORS
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IMPORTANT: the theorem says nothing about the effective possibility to learn in a simple way the 
parameters of the model, all the DNN practice boils down in finding optimal and efficient 
techniques to solve this problem … 

26
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Regioni di decisione 
delle reti neurali

Regioni di forma 
arbitraria

Regioni convesse

Semispazi delimitati da 
iperpiani

Forma generaleRegioni di decisioneStruttura
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L1approccio RBF
� L;approccio RBF nasce nel contesto dei problemi di 

interpolazione esatta.
� Supponiamo di avere N punti xk con corrispondenti target tk. 

Vogliamo trovare una funzione h(.) tale che h(xk)= tk per 
k=1,G,N

� L;approccio RBF è basato sull;individuazione di N funzioni 
�(||x-xk||) tali che 
h(xk)= �kwk�(||x-xk||)

� Queste funzioni sono di solito della forma

dove il � rappresenta la smoothness della funzione




�

	
��
�

�
�� 2

2

2�
xexp�(x)

Structur Decision regions  Shapes
sub-spaced delimited 

by hyperplanes

convex regions

arbitrary shaped 

regions

∫Rn

∥f(x) − F(x)∥pdx < ϵ

F(x) = ∑ cia(w0i + wtx)

a FFNN with a single hidden layer containing a finite 
number of neurons with non linear activations can 

approximate continuous functions on compact 
subsets of Rn, under mild assumptions on the 

activation function

Universal approximation theorem proof:

- unbounded, sigmoid: here

- bounded, ReLU, arbitrary depth: here 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://arxiv.org/abs/1709.02540


LEARN A NON LINEAR 
MAPPING OF THE INPUT

ANN AS A NON LINEAR MAPPING ALGORITHM
• An ANN with non linear activations can be thought as an algorithm that learn two tasks at the same time:
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LEARN A (LINEAR) MAPPING 
BETWEEN LETENT 

REPRESENTATION AND TARGET Φ:Rd→R∞ 
g(x) = wtΦ(x)+w0

a similar approach as in other 
classical ML techniques: like SVM

16
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Casi non linearmente 
separabili
� Nel caso in cui non ci sia soluzione (insiemi non 

linearmente separabili), si introduce un mapping
�(x) ad uno spazio di dimensione molto più grande 
in cui gli insiemi corrispondenti siano linearmente 
separabili.

� Quindi, invece di aumentare la complessità del 
classificatore (che resta un iperpiano) si aumenta la 
dimensione dello spazio delle features.

� In dipendenza della dimensione dello spazio in cui è
formulato il problema originale, il mapping può 
portare anche a dimensioni molto elevate (~106) 
dello spazio trasformato.
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Casi non linearmente 
separabili

Problema originale a 
d dimensioni Problema a N>>d 

dimensioni

Ricerca dell6OSH

mapping
tramite �(.)

mapping
tramite �(.)

SRM

original problem in d 
dimensions problem with N≫d 

dimensions

search of the optimal 
separating hyperplane

mapping 
via φ(.)

mapping 
via φ(.)

SVM

evolution of this approach: Deep-NN
a DNN is a ANN with >1 hidden layer …



DNN: WHY GOING DEEP WORKS?
• the universal approximation theorem tells us that already a FFNN with one hidden layer can 

approximate any function with arbitrary precision


• however deep architectures are much more efficient at representing a larger class of 
mapping functions:


• problems that can be represented with a polynomial number of neurons in k layers 
require an exponential number of neurons in a shallow network (Hastad et Al (86), 
Y.Bengio (2007))


• sub-features (intermediate representations)  
can be used in parallel for multiple tasks  
performed with the same model


• overparametrization and skip connections 
in very deep NN seems to have beneficial  
effectsin smoothing the loss function landscape
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VGG-56

VGG-110

#weights

arXiv:1712.09913 [cs.LG]



WHY GOING DEEP IS DIFFICULT: VANISHING GRADIENT
• the main problem in the use of DNN architectures is related to the vanishing gradient 


• the first layers of a deep NN fail to learn efficiently


• reason: during backprop in a network of n hidden layers, n derivatives of the activation 
functions will be multiplied together. If the derivatives are small then the gradient will 
decrease exponentially as we propagate through the model until it eventually vanishes
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a

a’

• SOLUTIONS:


1. use activation functions which do not produce small derivatives: i.e. ReLU, LeakyReLU, Selu, …


2. use batch normalisation layers: in which the input is normalised  
before to be processed by the layer in order to constraint it to  
not reach regions of the activation function where derivatives  
are small (additional advantage: prevent the target of each layer  
from moving continuously during the training (internal covariate shift))


3. use residual networks: in which skip connections that do not pass through  
the activation functions and propagate information to subsequent layers  
(additional advantage : makes learning the layer easier) 



LEARN THE PARAMETERS (I.E. TRAINING OF THE ANN)
• training consists in adjusting the parameters according to a given cost function that is a 
differentiable proxy to the performance of the model wrt the specific task we want to solve 

• weights and biases: “adjusted” using stochastic gradient descent with back-propagation

• hyperparameters (parameters whose values are fixed before the learning process begins): “adjusted” 
using heuristic approaches (manual trial&error, grid or random search, bayesian-opt, autoML, …)
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Example: supervised training 

• during the training N examples are presented to the network: T{x(i), y(i)} (i=1,…,N) 

• weights are initialised to random values (small and around zero): for example ~N(0,σ) or U[-ε,ε] 

• for each event the output of the model ŷ(x(i)) is calculated and compared with the expected target y(i) by 

means of an appropriate loss function that measures the "distance" between ŷ(x(i)) and y(i):

example: MSE

L(w, T) =
1
N

N

∑
i=1

Li (y(i), ̂y(i)(x(i) |w)) Li =
1
2 (y(i) − ̂y(i)(x(i) |w))2



LOSS FUNCTIONS
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binary cross-entropy

MSE

p = predicted probability (0,1)

y = label (0 or 1)

NOTE: generalisation for multi class problems 

- categorical cross-entropy (one-hot encoded label)

- sparse categorical cross-entropy (integer labels)

given two distributions p and q, Hp(q) measures the average number of bits needed to identify an event extracted 
from the set, when the p model is used for the probability distribution, rather than the "true" distribution q.  It is 
usually the best loss function to train ANNs that output probabilities (example: softmax)

for regression problems

Modern ANNs are trained using the maximum likelihood principle, consequently the most used loss functions are 
simply equivalent expressions/approximations of the negative log-likelihood:

L(w) = − ET[log pmodel(y |x, w)]

most popular forms: 

MSE = | |y − ̂y | |2 =
1
N

N

∑
i=1

(y − ̂y)2
(also MAE, UberLoss, …)

Hp(q) = −
1
N

N

∑
i=1

yi log(pi) + (1 − yi)log(1 − pi)



LOSS FUNCTION MINIMIZATION
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w* = argmin
w

[L(w)]• the vector of weights is chosen as the one that minimizes L:

• the minimum is sought with GD techniques … w(t+1) = w(t) − η∇wL(T |w)

L(w)

Lmin(w)



• for large datasets GD becomes computationally inefficient and it is replaced by a stochastic implementation: 

• weights are updated after having presented to the model sub-sets (mini batches) of the entire dataset T:


• T is divided in m sub-samples (mini batches) T1…Tm

• weights are updated using each subset Ti: 

STOCHASTIC GRADIENT DESCENT (WITH MOMENTUM)
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∇Li(w(k)) =

=
1
Ni

∇ ∑
k∈Ti

L(xk, yk, w)

v(k+1) = αv(k) + (1 − α)∇Li(w(k))

w(k+1) = w(k) − ηv(k+1)

gradient 

direction

previous step 
direction

MOMENTUM:

• for α = 0 we have classic GD/SGD

• for α = 1 the gradient descent is ignored and the weight update follows the previous direction (momentum) 

• typically: α ~0.9-0.99

the additional 
fluctuations help 

to avoid local 
spurious minima



VARIABLE LEARNING RATE
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• η affects the speed of convergence: 
• a small value can result in excessive slowness and an increase in the 

probability of being trapped in local minima 
• a large value can cause the algorithm to diverge

• solution: Variable Learning Rate and Adaptive Learning Rate Optimizers

• during the iterations the learning rate decrease according to a predetermined 

schedule or adapt following a specific strategy 10
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Metodo della discesa lungo il 
gradiente
Supponiamo che alla 
generica iterazione k 
abbiamo un vettore dei pesi 
w(k). Il gradiente di J per quel 
vettore sia �J(w(k)). Il valore 
aggiornato di w sarà:

dove � è una costante 
definita tasso di 
apprendimento (learning rate) 
e definisce lCampiezza della 
modifica del vettore.

J

J
� �)()()1( kJkk www ����� �
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Come scegliere il 
learning rate ?
� Il valore di � influisce sulla rapidità di convergenza 

dellCalgoritmo, per cui un valore basso può risultare in 
una lentezza eccessiva

small η

slow convergence

11
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Come scegliere il 
learning rate ?
� Di contro, un valore troppo alto può far divergere 

l5algoritmo
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Algoritmi di apprendimento

� Sulla base del criterio J(w) scelto e della 
regola di minimizzazione si possono quindi 
definire diversi algoritmi di apprendimento
che mirano a costruire la fdl.

� Analizziamo tre algoritmi:
� L5algoritmo del Perceptron

� L5algoritmo MSE

� L5algoritmo di Widrow-Hoff o algoritmo LMS

ADAptive grad: the learning rate associated with each weight is individually scaled inversely 
proportional to the root of the historical sum of squares of the gradients for that parameter:

  - directions associated to relevant features: smaller effective LR

  - directions associated to non relevant/low frequency features: larger effective LR

several implementations:

Adadelta, RMSProp, Adam, …

large η

cause drastic 

updates leading to 
instability



BACKPROPAGATION

• the training of an NN takes place in two distinct phases which are repeated at each iteration:


• forward phase: the weights are fixed and the input vector is propagated layer  
by layer up to the output neurons (function signal)


• backward phase:  the Δ error is calculated by comparing the output with the  
target y and the result is propagated back, again layer by layer (error signal)


• each neuron (hidden or output) receives and compares the function and error signals


• back-propagation consists of a simplification of the gradient calculation obtained by applying recursively the 
rule of derivation of compound functions in the backward phase and implementing it as a computational 
graph to which apply automatic differentiation 


• with backprop calculating the gradient of the Loss is as fast as calculating the Loss itself …
17

to update the weights of all the layers of the network is necessary to calculate the gradient of complicated non 
convex functions with respect each weight, and to evaluate its numerical value. Doing it in a simple and efficient 
way is called Backpropagation procedure



MONITORING THE TRAINING: LEARNING CURVES
• at the start of the training phase when the network weights have been initialised randomly (with small random 

values) the error on the training set (the loss value) is typically large


• with the iterations (epochs) the error tend to decrease until it reach (typically) a plateau value that depends on: 
the size of the training set, the NN architecture, initial value of the weights, the hyper-parameters … 


• training progress is visualized with the learning curves (loss or accuracy or any useful metrics vs epochs)

18

22
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Terminazione 
dell-apprendimento

E/n

test validation

terminazione 
dell-apprendimento
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Migliorare il training
� Problema dei minimi locali

Lo
ss• multiple datasets (or cross validation) are needed to monitor the 

tradeoff between bias and variance during the training (e.g. 
undercutting vs overfitting) and to optimise the hyper parameter of the 
model 

• training set: to update the weights

• validation set: to choose hyper-parameters and the training stop 

criteria

• test set: to evaluate the final performances of the trained model



DOUBLE DESCENT IN DNN
• the bias-variance tradeoff tell us that larger models are worse: a model with zero training error is 

overfit to the training data and is expected to generalize poorly


• however large overparametrized DNNs, trained with datasets smaller than the number of 
parameters, exhibit the so called doubled descent phenomena (M.Belkin et al. https://arxiv.org/
abs/1812.11118):

19
interpolation threshold seems to occur when the number 
of parameters is roughly equal to the number of samples

https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1812.11118


MOST CRITICAL ASPECTS IN THE TRAINING OF ANNs
• training speed:


• mitigated by using stochastic-learning, momentum, adaptive learning rate (Adam o RMSProp), non 
saturating activation functions (ReLU, …), smart weight initialisation, and scaling of the input features


• but most of all by using dedicated coprocessors (GPUs, TPUs, ACAPs, SOCs, FPGAs, …) 


• hardcore overfitting:


• inevitable consequence of the trade-off between variance (large expressive power) and bias 
(generalization)


• issue controlled by applying a set of regularization techniques aimed at reducing the error on the test 
set (typically at the expense of error on the training set)


• regularisation techniques impose constraints on different aspects of the NN model such as the 
complexity of the NN architecture, the error reduction on the training set, the representation of the 
loss function landscape, the size of weights, etc… so that will be more difficult for the model to learn 
characteristic that are specific of the training set itself
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DROPOUT
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before after

• used routinely in with convolutional-NN where it can sensibly increase performance on the test set 


• can be also applied as preprocessing of the input (dropping part of the input, like some nodes in a point cloud or 
nodes/edges in a graph), or also after training (weight pruning) to improve generalisation and also to compress the 
model … 

• very popular and powerful technique to prevent overfitting in architecture of deep neural network


• imposes constraints on the complexity of the Neural Network architecture


• neuron connections are randomly eliminated during training (only on training step non validation) based on a defined probability


• forces the model to not rely excessively on particular sets of features

NOTE: random sampling is applied 
independently for each mini-batch 

(works like a sort of ensamble method) 



EXPLICIT WEIGHT PENALTIES: L1/L2/L3 REGULARIZATION
• idea: constrain the complexity of the model by penalizing large values of the weights, unless it is strongly 

requested by the data itself

• method: a penalty is added to the loss function: L(w) →  L(w) + α Ω(w)

22

w1

w2

w* w* w*

||w||1≤1 ||w||2≤1 (1-α)||w||1+ α||w||2≤1

L1 L2 weight decay L1+L2

Ω(w) =
α
2

w 2
2 =

=
α
2

wtw = ∑ w2
k

Ω(w) = λ[(1 − α) w 1 + α w 2
2]Ω(w) = α w 1 =

= ∑ |wk |

isocurves 
of Ω

isocurves of L



EARLY STOPPING AND NOISE INJECTION
• early stopping: imposes constraints on the error reduction on the training set

• the training process is stopped  as soon as the loss on the validation sample reaches a plateau or start to increase 
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• noise injection/information loss: makes it more difficult for the 
network to learn specific characteristics of the input features

• random flip of labels

• random occlusion of pixels or feature bits

• adding withe/colored/gaussian noise to the features

• …

always remember there are regimes in 
which training more improve 

generalisation (e.g. double descent) 



DATA AUGMENTATION
• a good way to make an ML algorithm to generalize better is to train it on larger and more expressive data


• but having more data is normally the real issue in ML/DL → solution: artificially increase the dimension of 
the training set by applying transformations that preserve the relevant “physics” of the data/problem

24+ modern approaches can be also based on data produced with generative models (GAN, VAE, …)



HOW A ANN “SEE” AN IMAGE  …
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images for a computer are essentially meshes (tensors) of numbers

gray scale image with 8bit depth: 12x16x1 intensity ∈ [0,256]

color image with n-bit depth: m1xm2x3 with each RGB intensity ∈ [0,2n]

credit MIT AI course



HOW AN ANN “SEE” AN IMAGE  …
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we know that a FFNN is able to learn the desired hierarchical representations:

x 1D array of the 
image pixel values P(label | x)

However: 

- it needs a huge number of learnable parameters (weights) → hard to train, overfitting …

- it does not use any local spatial information

- too much flexibility results in arbitrarily complex models for which is very hard to achieve generalisation 


A remedy to facilitate the training, is to introduce task independent priors, i.e. parts of the model that are 
not learnt (called inductive relational biases), motivated by general properties observed in data




ARCHITECTURES FOR VISION: CNN
• Convolutional NN is one of these specific DNN architecture designed to excel in image recognition tasks


• Acts directly on the images (raw “pixel” information organised in a fixed size mesh)

• Implements several inductive biases typical of photographic images:


• locality of the features: to identify a feature it takes just a few pixels in a small portion of the image

• translation equivariance: features in the image remain the same in different points of the image

• self-similarity: identical features can be recognised with a single filter 

• compositionality: a complex feature can be recognised by identifying only few of such sub-features


• Implementation idea: apply layers called convolutional filters that operate on the input by recognising the local 
features present there

• the same filters use shared parameters (weights) and sequentially analyse all portions of the image 

• weights of the filters are not fixed but are learned 


• CNNs learn from the training data sample the best set of filters to solve the task given the chosen architecture
27



CONVOLUTIONAL FEATURE EXTRACTION LAYER
• used to identify similar features that are present in different position of the image


• based on three basic ideas: 


• local receptive field 


• shared-weights kernels 


• pooling layers

28

local receptive field 
5x5

• input neurons (one for each NxN pixels of the image) are NOT fully connected with all 
the neurons of the first hidden layer. Connections exist only for localised and small 
regions of the image called local receptive fields


• the local receptive field is shifted through the whole image: for each shifted receptive 
field there will be an hidden neuron in the hidden layer

24 = 28-5+1

stride S=1
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• shared-weights: 

• all the hidden neurons of a given hidden layer share the same weights → all neurons of the hidden 

layer detect the same sub-feature, only in different regions of the image 

• as the CNN has to identify many sub-features: there can be many convolutional kernels each one 

with an associated hidden layer:  input image (n,m,3) → output (k,l,d)    

• huge advantage wrt DNN: much smaller number of weights to learn …

local receptive field or

convolutional kernel

convolution

operation wi

xi
∑xi*wi

after the convolution operation, non linearity is applied to each neutron of the filtered image via 
an activation (ex. ReLU)



NON LINEARITY
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after ReLU

after the convolution operation, an activation function is applied to each (neuron) of the filtered image (ex. 
ReLU: all negative values are set to zero)

- emphasize only some of the dominant characteristics of the sub-features selected by the filter

before ReLU



• pooling layers: 

• in addition of the convolution layers a CNN has also other layers called pooling layers, usually used 
after each convolution layer. They performs a downsampling operation: simplifying the information in 
output from the convolutional layer (less weights) and making the NN less sensitive to small 
translations of the image


• motivated on the fact that once a sub-feature is found, to know the exact position is not as important 
as to know the relative position wrt the other sub-feature in the image
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FULL CNN: CONV BLOCKS + DENSE MLP STAGE
• generally after the convolutions the output of the convolutional layers is connected via a flattening layer 

with one or more dense layers (DNN), that are used to optime objectives: class scores (classification), 
mapping (regression), etc…

32

Example: LeNet (Yan LeCun)
multi-staged CNN for classification:  (Conv2D+MaxPooling)x2 + 2xDense + output layer (soft max)

detects details 
(segments, arcs, …)

focus on overall 
shapes

maps high level 
representations to targets



MODERN CNNs
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philosophy: deeper is better …

• AlexNet: better backdrop via ReLU, dropout, batch normalisation, data augmentation

• VGG: smaller 2D kernels(3x3) with more convolutional blocks to induce more non-

linearity and so more degree of freedom for the network

• GoogleNet (Inception):

Inception module:  

- 2D convolutions with different kernel sizes process the same input and then are concatenated

- multi-level feature extraction at each step: general features captured by 5x5 at the same time 

with local ones captured by 3x3

- additional intermediate classification tasks to inject gradient in intermediate layers …



ResNet and DenseNet
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going deeper increase the vanishing gradient problem

residual learning in ResNet help mitigating it  

estreme extension of the idea: connect entire blocks of layers to one another

helps in diversifying the features within these blocks

DenseNet

Block

 …. continue for 152 layers
ResNet-152

60 MPar

- main difference were ResNets is that feature maps are  
concatenated instead of added (better feature reuse but requires 
transition downsampling layers to keep same size in feature maps)


- to avoid memory explosion use 1x1 bottlenecks

specialized evolution: UNet 
architecture, CNN for image 
segmentation and denoising 
(see specific lectures on 
object-detection)




ANN ARCHITECTURES FOR UNSUPERVISED REPRESENTATION LEARNING: AUTOENCODERS

• non-supervised algorithm that try to identify common and fundamental characteristic in the input data

• combines an encoder that converts input data in a different representation, with a decoder that 

converts the new representation back to the original input

• trained to output something as close as possible to the input (i.e to learn the identity function) 
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• “trivial” unless to constrain the network to learn a 
“compressed” latent representations (in the example: 
x∈R5→z∈R3), able to capture “high-level” features of the data 

input 
v(5)

output = input
bottleneck

ENCODER DECODER



AUTO-ENCODER  
IMPLEMENTATION

36NOTE: L do not depends on dataset labels (unsupervised learning)

x z x̂

L(x, ̂x) = ∥x − ̂x∥2

gϕ(x) : Rd → Rz

fθ(z) : Rz → Rd

ϕ*, θ* = arg max
ϕ,θ

1
N ∑ L(x(i), ̂x(i)) =

= arg max
ϕ,θ

1
N ∑ L(x(i), fθ(gϕ(x))

L(x, ̂x) = − ∑
D

[xk log( ̂xk) + (1 − xk)log(1 − ̂xk)]or

ENCODER: x→z

DECODER: z→x

trained so that: Output ≃ Input



ARCHITECTURES FOR SEQUENCES: RECURRENT NEURAL NETWORKS

• RNN are specific ANN architectures optimised to identify long-term correlations in sequence of 
informations of variable lengths (example: natural language processing, signal processing, time 
series forecasting, etc…) 


• typical task for a RNN: given a sequence of features (text, music, … a list of charged tracks 
parameters), predict one or more targets (the next word on a phrase, the weather in the next 
24h, the flavour of a hadron jet in an hep experiment, …)


• a RNN is able to: 


• takes in input sequences of variable length


• keep track of dependences between elements thatare distant  
in the sequence 


• keep information on the order between the elements of the sequence


• use shared weights so that identified correlations between elements  
can be transferred in diverse points of the sequence

37

 ANN
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L
→ FORWARD PASS

ŷ

ht

̂yt = Wt
hyht

=

ht = fw(ht−1, xt) =

= tanh(Wt
hhht−1 + Wt

xhxt)

old-state

sequence input at step t

• a RNN processes the input in a loop (recurrent connection) that allows the persistence of the informations during 
the entire processing of the sequence’s elements


• base module: A is a NN that analyse the t element of the input sequence xt and produce the output ht (hidden 
state).  ht  is passed to the same network during the processing of the next element of the sequence

the same function fw with the same set 
of weights is used to process each 

element t of the sequence …

can be thought of as a 
series of multiple copies 
of the same conventional 

neural network, each 
passing a message to its 

successor

RNN IMPLEMENTATION

 ANN



RNN AND LONG TERM DEPENDENCIES

39

- in RNNs unbounded activations (like ReLU) cannot be 
used as they create instabilities


- tanh or sigmoid are OK but suffers vanishing of the 
gradient

problem solved in LSTM RNN (Hochreiter, '97) with a "software trick": uses four neural layers which interact in 
such a way to implement a sort of parallel data-flow which at each step t makes the information from previous 
steps available w/o being affected by gradient dilution

key element: cell-state Ct

is a memory units (“conveyor belt”) to which is 
possibile to add or subtract information using 
“gate” structuresht

CtCt−1

ht−1



LONG SHORT TERM MEMORY NETWORKS

40

output ∈[0,1]:   

every LSTM has 3 gates: 


- f: forget gate (controls deleting from the cell-state)

- i: input gate (controls writing on the cell-state) 

- o: output gate (controls the output on ht)  

gate: NN-layer with sigmoid activation and a point-wise multiplication

the backprop from Ct →Ct-1 doesn’t requires multiplications for tanh/sigmoid → no gradient dilution …

every publication implementing a LSTM has used a slightly different version of the original algorithm, so 
you’ll find it with different names … 

GRU (Gate Recurrent Unit): 
combines the gates and unify 
hidden state with cell-state to 
simplify model and number of 
parameters (one of the most 

used RNNs)

LSTM with “peephole”: 
gate layers can see the 

cell-state   

ht

Ct
Ct−1

ht−1



VARIATIONS

41

Stacked RNNs

enables more complex representation 


capturing information at different scales

Bidirectional RNNs

inputs are processed in both forward 

and reverse time order

allows a BRNN to look at future 

context as well



VARIATIONS

42

Encoder-Decoder RNNs

sequence2sequence: uses an RNN to generate 
a context vector that encode the whole input 
sequence and a separate RNN to generate 
another sequence from the encoded context

often used in machine translation

encoder

decoder



KEEP IN TOUCH …
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