
Online/INFN Cloud - 21.6.2023

ANN: PRINCIPLES AND
COMMON ARCHITECTURES
S. Giagu - 4th ML_INFN Hackathon

ARTIFICIAL NEURAL NETWORKS
• the most popular approach to machine learning in the last decade

• an ANN is a mathematical model able to approximate with high precision generic multidimensional functions:

• very shallow analogy with biological neural networks

• more precisely defined as a composition of functions (layers) connected in chains described  
by a graph (ex: a feed-forward ANN described as a direct acyclic graph)

2

• connectionist computational approach: collective actions performed in parallel by simple computational units (neurons)

• learns as an adaptive system: the network structure dynamically change during a training phase based on a set of examples that

flow through the network during the training steps

• non linear response obtained by non linear neuron outputs

• hierarchic representation learning obtained by implementing complex multilayered topologies (DNN)

f : Rn → Rm: y = f(x) ⟶ ANN(x) = ̂y

• receives in input n signals xi and outputs y given as
composition of a synaptic function:

• and an activation function  
(for example a step function):

ARTIFICIAL NEURON MODEL: TRESHOLD LINEAR UNIT
• artificial neuron (McCulloch-Pitts (1943) and Rosenblatt (1962)):

3

Input

Weights

Synaptic
sum

Activation

Output

̂y = a(z) = a(w0 + xtw)

w =
w1
⋮

wm

x =
x1
⋮
xm

a(z) = {
1 if wtz ≥ − w0

0 if wtz < − w0

z = w0 +
n

∑
i=1

wixi = w0 + wtx

a single layer of TLU with step
activation can only learn to
solve problems with linearly

separable classes

7

Teoria e Tecniche di Pattern Recognition

Reti Neurali 12

F. Tortorella © 2005
Università degli Studi
di Cassino

Il Perceptron (Rosenblatt, 1962)

Teoria e Tecniche di Pattern Recognition

Reti Neurali 13

F. Tortorella © 2005
Università degli Studi
di Cassino

2 classi linearmente separabili

Con una TLU è possibile
risolvere i problemi in cui
le classi siano
linearmente separabili.

E se le classi sono
più di 2? x1

x2

extension to multilayers with non-linear activations allows to effectively learn complex hypersurfaces

a1(z1)

a1(z2)

a1(z3)

a1(zd1)
input

hidden layer

output

MULTILAYER PERCEPTRON (FEED-FORWARD NN)
• the most classical and simplest DNN architecture (FFNN or MLP)

4

• neurons organised in consecutive layers: input, hidden-1, ... , hidden-K, output

• only connections of neurons of a given layer towards the next are possible: acyclic direct graph

• all possible connections are present (dense layers)

≡

FFNN
acyclic direct

graph

zi = w(1)
0i +

m

∑
j=1

xjw(1)
ji

̂yi = a2 w(2)
0i +

d1

∑
j=1

a1(zj)w(2)
ji

• NN behaviour determined by:

• network topology (#layers, size of each layer, …)

• weights wij

• activation function of each layer

MLP with 1 hidden layer

synaptic sum

a1(zi) activation

5

non-linear activations allows to learn complex and non linear patterns …

a(z) = z a(z) = max[0,z]a(z) = tanh[z]

Linear Tanh ReLU

ACTIVATION FUNCTIONS FOR THE HIDDEN LAYERS

6

In general, any continuous and differentiable function would works. In practice some functions are better than
others …

should not be used in general for dense and convolutional layers:

- gradient vanishes away from x=0 → vanishing gradient problem

- sigmoid has output not centered in zero → affects SGD dynamic (zig-zag instabilities)

- used in RNN to control gated I/O and often in dense layers in GAN to avoid sparsity

the most popular:

- allows non linear dynamics

- faster convergence of the NN because doesn’t saturate

- no vanishing gradient problem

- induce gradient sparsity (0 output for negative values, i.e. fewer active neurons). This

can be an advantage or an issue depending on the specific ANN architecture and task.
In case of problems can be replaced with alternatives:

POPULAR ACTIVATION FUNCTIONS FOR THE OUTPUT LAYER

7

Sigmoid: typically used in binary classification problems (2 classes) with a single output
neuron, or multilabel (multiple mutually inclusive classes) or sometime when the output
features are numbers in (0,1)

Softmax: Rn→ [0,1]n

- soft version of the argmax output ()

-often used in multi-class classification tasks (with mutually exclusive classes)

-makes output a convex sum: and interpretable as a probability

y = arg max[z]

yi ∈ (0,1) ∑
i

yi = 1

yi =
ezj

∑n
j=1 ezj

Identity (linear): standard choice for regression tasks

FFNN AS UNIVERSAL APPROXIMATORS

8

IMPORTANT: the theorem says nothing about the effective possibility to learn in a simple way the
parameters of the model, all the DNN practice boils down in finding optimal and efficient
techniques to solve this problem …

26

Teoria e Tecniche di Pattern Recognition

Reti Neurali 50

F. Tortorella © 2005
Università degli Studi
di Cassino

Regioni di decisione
delle reti neurali

Regioni di forma
arbitraria

Regioni convesse

Semispazi delimitati da
iperpiani

Forma generaleRegioni di decisioneStruttura

Teoria e Tecniche di Pattern Recognition

Reti Neurali 51

F. Tortorella © 2005
Università degli Studi
di Cassino

L1approccio RBF
� L;approccio RBF nasce nel contesto dei problemi di

interpolazione esatta.
� Supponiamo di avere N punti xk con corrispondenti target tk.

Vogliamo trovare una funzione h(.) tale che h(xk)= tk per
k=1,G,N

� L;approccio RBF è basato sull;individuazione di N funzioni
�(||x-xk||) tali che
h(xk)= �kwk�(||x-xk||)

� Queste funzioni sono di solito della forma

dove il � rappresenta la smoothness della funzione

�

	
��
�

�
�� 2

2

2�
xexp�(x)

Structur Decision regions Shapes
sub-spaced delimited

by hyperplanes

convex regions

arbitrary shaped

regions

∫Rn

∥f(x) − F(x)∥pdx < ϵ

F(x) = ∑ cia(w0i + wtx)

a FFNN with a single hidden layer containing a finite
number of neurons with non linear activations can

approximate continuous functions on compact
subsets of Rn, under mild assumptions on the

activation function

Universal approximation theorem proof:

- unbounded, sigmoid: here

- bounded, ReLU, arbitrary depth: here

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://arxiv.org/abs/1709.02540

LEARN A NON LINEAR
MAPPING OF THE INPUT

ANN AS A NON LINEAR MAPPING ALGORITHM
• An ANN with non linear activations can be thought as an algorithm that learn two tasks at the same time:

9

LEARN A (LINEAR) MAPPING
BETWEEN LETENT

REPRESENTATION AND TARGET Φ:Rd→R∞
g(x) = wtΦ(x)+w0

a similar approach as in other
classical ML techniques: like SVM

16

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 30

F. Tortorella © 2005
Università degli Studi
di Cassino

Casi non linearmente
separabili
� Nel caso in cui non ci sia soluzione (insiemi non

linearmente separabili), si introduce un mapping
�(x) ad uno spazio di dimensione molto più grande
in cui gli insiemi corrispondenti siano linearmente
separabili.

� Quindi, invece di aumentare la complessità del
classificatore (che resta un iperpiano) si aumenta la
dimensione dello spazio delle features.

� In dipendenza della dimensione dello spazio in cui è
formulato il problema originale, il mapping può
portare anche a dimensioni molto elevate (~106)
dello spazio trasformato.

Teoria e Tecniche di Pattern Recognition

Support Vector Machines 31

F. Tortorella © 2005
Università degli Studi
di Cassino

Casi non linearmente
separabili

Problema originale a
d dimensioni Problema a N>>d

dimensioni

Ricerca dell6OSH

mapping
tramite �(.)

mapping
tramite �(.)

SRM

original problem in d
dimensions problem with N≫d

dimensions

search of the optimal
separating hyperplane

mapping
via φ(.)

mapping
via φ(.)

SVM

evolution of this approach: Deep-NN
a DNN is a ANN with >1 hidden layer …

DNN: WHY GOING DEEP WORKS?
• the universal approximation theorem tells us that already a FFNN with one hidden layer can

approximate any function with arbitrary precision

• however deep architectures are much more efficient at representing a larger class of
mapping functions:

• problems that can be represented with a polynomial number of neurons in k layers
require an exponential number of neurons in a shallow network (Hastad et Al (86),
Y.Bengio (2007))

• sub-features (intermediate representations)  
can be used in parallel for multiple tasks  
performed with the same model

• overparametrization and skip connections 
in very deep NN seems to have beneficial  
effectsin smoothing the loss function landscape

10

VGG-56

VGG-110

#weights

arXiv:1712.09913 [cs.LG]

WHY GOING DEEP IS DIFFICULT: VANISHING GRADIENT
• the main problem in the use of DNN architectures is related to the vanishing gradient

• the first layers of a deep NN fail to learn efficiently

• reason: during backprop in a network of n hidden layers, n derivatives of the activation
functions will be multiplied together. If the derivatives are small then the gradient will
decrease exponentially as we propagate through the model until it eventually vanishes

11

a

a’

• SOLUTIONS:

1. use activation functions which do not produce small derivatives: i.e. ReLU, LeakyReLU, Selu, …

2. use batch normalisation layers: in which the input is normalised  
before to be processed by the layer in order to constraint it to  
not reach regions of the activation function where derivatives  
are small (additional advantage: prevent the target of each layer  
from moving continuously during the training (internal covariate shift))

3. use residual networks: in which skip connections that do not pass through  
the activation functions and propagate information to subsequent layers  
(additional advantage : makes learning the layer easier)

LEARN THE PARAMETERS (I.E. TRAINING OF THE ANN)
• training consists in adjusting the parameters according to a given cost function that is a
differentiable proxy to the performance of the model wrt the specific task we want to solve

• weights and biases: “adjusted” using stochastic gradient descent with back-propagation

• hyperparameters (parameters whose values are fixed before the learning process begins): “adjusted”
using heuristic approaches (manual trial&error, grid or random search, bayesian-opt, autoML, …)

12

Example: supervised training

• during the training N examples are presented to the network: T{x(i), y(i)} (i=1,…,N)

• weights are initialised to random values (small and around zero): for example ~N(0,σ) or U[-ε,ε]

• for each event the output of the model ŷ(x(i)) is calculated and compared with the expected target y(i) by

means of an appropriate loss function that measures the "distance" between ŷ(x(i)) and y(i):

example: MSE

L(w, T) =
1
N

N

∑
i=1

Li (y(i), ̂y(i)(x(i) |w)) Li =
1
2 (y(i) − ̂y(i)(x(i) |w))2

LOSS FUNCTIONS

13

binary cross-entropy

MSE

p = predicted probability (0,1)

y = label (0 or 1)

NOTE: generalisation for multi class problems

- categorical cross-entropy (one-hot encoded label)

- sparse categorical cross-entropy (integer labels)

given two distributions p and q, Hp(q) measures the average number of bits needed to identify an event extracted
from the set, when the p model is used for the probability distribution, rather than the "true" distribution q. It is
usually the best loss function to train ANNs that output probabilities (example: softmax)

for regression problems

Modern ANNs are trained using the maximum likelihood principle, consequently the most used loss functions are
simply equivalent expressions/approximations of the negative log-likelihood:

L(w) = − ET[log pmodel(y |x, w)]

most popular forms:

MSE = | |y − ̂y | |2 =
1
N

N

∑
i=1

(y − ̂y)2
(also MAE, UberLoss, …)

Hp(q) = −
1
N

N

∑
i=1

yi log(pi) + (1 − yi)log(1 − pi)

LOSS FUNCTION MINIMIZATION

14

w* = argmin
w

[L(w)]• the vector of weights is chosen as the one that minimizes L:

• the minimum is sought with GD techniques … w(t+1) = w(t) − η∇wL(T |w)

L(w)

Lmin(w)

• for large datasets GD becomes computationally inefficient and it is replaced by a stochastic implementation:

• weights are updated after having presented to the model sub-sets (mini batches) of the entire dataset T:

• T is divided in m sub-samples (mini batches) T1…Tm

• weights are updated using each subset Ti:

STOCHASTIC GRADIENT DESCENT (WITH MOMENTUM)

15

∇Li(w(k)) =

=
1
Ni

∇ ∑
k∈Ti

L(xk, yk, w)

v(k+1) = αv(k) + (1 − α)∇Li(w(k))

w(k+1) = w(k) − ηv(k+1)

gradient

direction

previous step
direction

MOMENTUM:

• for α = 0 we have classic GD/SGD

• for α = 1 the gradient descent is ignored and the weight update follows the previous direction (momentum)

• typically: α ~0.9-0.99

the additional
fluctuations help

to avoid local
spurious minima

VARIABLE LEARNING RATE

16

• η affects the speed of convergence:
• a small value can result in excessive slowness and an increase in the

probability of being trapped in local minima
• a large value can cause the algorithm to diverge

• solution: Variable Learning Rate and Adaptive Learning Rate Optimizers

• during the iterations the learning rate decrease according to a predetermined

schedule or adapt following a specific strategy 10

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 18

F. Tortorella © 2005
Università degli Studi
di Cassino

Metodo della discesa lungo il
gradiente
Supponiamo che alla
generica iterazione k
abbiamo un vettore dei pesi
w(k). Il gradiente di J per quel
vettore sia �J(w(k)). Il valore
aggiornato di w sarà:

dove � è una costante
definita tasso di
apprendimento (learning rate)
e definisce lCampiezza della
modifica del vettore.

J

J
� �)()()1(kJkk www ����� �

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 19

F. Tortorella © 2005
Università degli Studi
di Cassino

Come scegliere il
learning rate ?
� Il valore di � influisce sulla rapidità di convergenza

dellCalgoritmo, per cui un valore basso può risultare in
una lentezza eccessiva

small η

slow convergence

11

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 20

F. Tortorella © 2005
Università degli Studi
di Cassino

Come scegliere il
learning rate ?
� Di contro, un valore troppo alto può far divergere

l5algoritmo

Teoria e Tecniche di Pattern Recognition

Funzioni Discriminanti Lineari 21

F. Tortorella © 2005
Università degli Studi
di Cassino

Algoritmi di apprendimento

� Sulla base del criterio J(w) scelto e della
regola di minimizzazione si possono quindi
definire diversi algoritmi di apprendimento
che mirano a costruire la fdl.

� Analizziamo tre algoritmi:
� L5algoritmo del Perceptron

� L5algoritmo MSE

� L5algoritmo di Widrow-Hoff o algoritmo LMS

ADAptive grad: the learning rate associated with each weight is individually scaled inversely
proportional to the root of the historical sum of squares of the gradients for that parameter:

 - directions associated to relevant features: smaller effective LR

 - directions associated to non relevant/low frequency features: larger effective LR

several implementations:

Adadelta, RMSProp, Adam, …

large η

cause drastic

updates leading to
instability

BACKPROPAGATION

• the training of an NN takes place in two distinct phases which are repeated at each iteration:

• forward phase: the weights are fixed and the input vector is propagated layer  
by layer up to the output neurons (function signal)

• backward phase: the Δ error is calculated by comparing the output with the  
target y and the result is propagated back, again layer by layer (error signal)

• each neuron (hidden or output) receives and compares the function and error signals

• back-propagation consists of a simplification of the gradient calculation obtained by applying recursively the
rule of derivation of compound functions in the backward phase and implementing it as a computational
graph to which apply automatic differentiation

• with backprop calculating the gradient of the Loss is as fast as calculating the Loss itself …
17

to update the weights of all the layers of the network is necessary to calculate the gradient of complicated non
convex functions with respect each weight, and to evaluate its numerical value. Doing it in a simple and efficient
way is called Backpropagation procedure

MONITORING THE TRAINING: LEARNING CURVES
• at the start of the training phase when the network weights have been initialised randomly (with small random

values) the error on the training set (the loss value) is typically large

• with the iterations (epochs) the error tend to decrease until it reach (typically) a plateau value that depends on:
the size of the training set, the NN architecture, initial value of the weights, the hyper-parameters …

• training progress is visualized with the learning curves (loss or accuracy or any useful metrics vs epochs)

18

22

Teoria e Tecniche di Pattern Recognition

Reti Neurali 42

F. Tortorella © 2005
Università degli Studi
di Cassino

Terminazione
dell-apprendimento

E/n

test validation

terminazione
dell-apprendimento

Teoria e Tecniche di Pattern Recognition

Reti Neurali 43

F. Tortorella © 2005
Università degli Studi
di Cassino

Migliorare il training
� Problema dei minimi locali

Lo
ss• multiple datasets (or cross validation) are needed to monitor the

tradeoff between bias and variance during the training (e.g.
undercutting vs overfitting) and to optimise the hyper parameter of the
model

• training set: to update the weights

• validation set: to choose hyper-parameters and the training stop

criteria

• test set: to evaluate the final performances of the trained model

DOUBLE DESCENT IN DNN
• the bias-variance tradeoff tell us that larger models are worse: a model with zero training error is

overfit to the training data and is expected to generalize poorly

• however large overparametrized DNNs, trained with datasets smaller than the number of
parameters, exhibit the so called doubled descent phenomena (M.Belkin et al. https://arxiv.org/
abs/1812.11118):

19
interpolation threshold seems to occur when the number
of parameters is roughly equal to the number of samples

https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/1812.11118

MOST CRITICAL ASPECTS IN THE TRAINING OF ANNs
• training speed:

• mitigated by using stochastic-learning, momentum, adaptive learning rate (Adam o RMSProp), non
saturating activation functions (ReLU, …), smart weight initialisation, and scaling of the input features

• but most of all by using dedicated coprocessors (GPUs, TPUs, ACAPs, SOCs, FPGAs, …)

• hardcore overfitting:

• inevitable consequence of the trade-off between variance (large expressive power) and bias
(generalization)

• issue controlled by applying a set of regularization techniques aimed at reducing the error on the test
set (typically at the expense of error on the training set)

• regularisation techniques impose constraints on different aspects of the NN model such as the
complexity of the NN architecture, the error reduction on the training set, the representation of the
loss function landscape, the size of weights, etc… so that will be more difficult for the model to learn
characteristic that are specific of the training set itself

20

DROPOUT

21

before after

• used routinely in with convolutional-NN where it can sensibly increase performance on the test set

• can be also applied as preprocessing of the input (dropping part of the input, like some nodes in a point cloud or
nodes/edges in a graph), or also after training (weight pruning) to improve generalisation and also to compress the
model …

• very popular and powerful technique to prevent overfitting in architecture of deep neural network

• imposes constraints on the complexity of the Neural Network architecture

• neuron connections are randomly eliminated during training (only on training step non validation) based on a defined probability

• forces the model to not rely excessively on particular sets of features

NOTE: random sampling is applied
independently for each mini-batch

(works like a sort of ensamble method)

EXPLICIT WEIGHT PENALTIES: L1/L2/L3 REGULARIZATION
• idea: constrain the complexity of the model by penalizing large values of the weights, unless it is strongly

requested by the data itself

• method: a penalty is added to the loss function: L(w) → L(w) + α Ω(w)

22

w1

w2

w* w* w*

||w||1≤1 ||w||2≤1 (1-α)||w||1+ α||w||2≤1

L1 L2 weight decay L1+L2

Ω(w) =
α
2

w 2
2 =

=
α
2

wtw = ∑ w2
k

Ω(w) = λ[(1 − α) w 1 + α w 2
2]Ω(w) = α w 1 =

= ∑ |wk |

isocurves
of Ω

isocurves of L

EARLY STOPPING AND NOISE INJECTION
• early stopping: imposes constraints on the error reduction on the training set

• the training process is stopped as soon as the loss on the validation sample reaches a plateau or start to increase

23

• noise injection/information loss: makes it more difficult for the
network to learn specific characteristics of the input features

• random flip of labels

• random occlusion of pixels or feature bits

• adding withe/colored/gaussian noise to the features

• …

always remember there are regimes in
which training more improve

generalisation (e.g. double descent)

DATA AUGMENTATION
• a good way to make an ML algorithm to generalize better is to train it on larger and more expressive data

• but having more data is normally the real issue in ML/DL → solution: artificially increase the dimension of
the training set by applying transformations that preserve the relevant “physics” of the data/problem

24+ modern approaches can be also based on data produced with generative models (GAN, VAE, …)

HOW A ANN “SEE” AN IMAGE …

25

images for a computer are essentially meshes (tensors) of numbers

gray scale image with 8bit depth: 12x16x1 intensity ∈ [0,256]

color image with n-bit depth: m1xm2x3 with each RGB intensity ∈ [0,2n]

credit MIT AI course

HOW AN ANN “SEE” AN IMAGE …

26

we know that a FFNN is able to learn the desired hierarchical representations:

x 1D array of the
image pixel values P(label | x)

However:

- it needs a huge number of learnable parameters (weights) → hard to train, overfitting …

- it does not use any local spatial information

- too much flexibility results in arbitrarily complex models for which is very hard to achieve generalisation

A remedy to facilitate the training, is to introduce task independent priors, i.e. parts of the model that are
not learnt (called inductive relational biases), motivated by general properties observed in data

ARCHITECTURES FOR VISION: CNN
• Convolutional NN is one of these specific DNN architecture designed to excel in image recognition tasks

• Acts directly on the images (raw “pixel” information organised in a fixed size mesh)

• Implements several inductive biases typical of photographic images:

• locality of the features: to identify a feature it takes just a few pixels in a small portion of the image

• translation equivariance: features in the image remain the same in different points of the image

• self-similarity: identical features can be recognised with a single filter

• compositionality: a complex feature can be recognised by identifying only few of such sub-features

• Implementation idea: apply layers called convolutional filters that operate on the input by recognising the local
features present there

• the same filters use shared parameters (weights) and sequentially analyse all portions of the image

• weights of the filters are not fixed but are learned

• CNNs learn from the training data sample the best set of filters to solve the task given the chosen architecture
27

CONVOLUTIONAL FEATURE EXTRACTION LAYER
• used to identify similar features that are present in different position of the image

• based on three basic ideas:

• local receptive field

• shared-weights kernels

• pooling layers

28

local receptive field
5x5

• input neurons (one for each NxN pixels of the image) are NOT fully connected with all
the neurons of the first hidden layer. Connections exist only for localised and small
regions of the image called local receptive fields

• the local receptive field is shifted through the whole image: for each shifted receptive
field there will be an hidden neuron in the hidden layer

24 = 28-5+1

stride S=1

29

• shared-weights:

• all the hidden neurons of a given hidden layer share the same weights → all neurons of the hidden

layer detect the same sub-feature, only in different regions of the image

• as the CNN has to identify many sub-features: there can be many convolutional kernels each one

with an associated hidden layer: input image (n,m,3) → output (k,l,d)

• huge advantage wrt DNN: much smaller number of weights to learn …

local receptive field or

convolutional kernel

convolution

operation wi

xi
∑xi*wi

after the convolution operation, non linearity is applied to each neutron of the filtered image via
an activation (ex. ReLU)

NON LINEARITY

30

after ReLU

after the convolution operation, an activation function is applied to each (neuron) of the filtered image (ex.
ReLU: all negative values are set to zero)

- emphasize only some of the dominant characteristics of the sub-features selected by the filter

before ReLU

• pooling layers:

• in addition of the convolution layers a CNN has also other layers called pooling layers, usually used
after each convolution layer. They performs a downsampling operation: simplifying the information in
output from the convolutional layer (less weights) and making the NN less sensitive to small
translations of the image

• motivated on the fact that once a sub-feature is found, to know the exact position is not as important
as to know the relative position wrt the other sub-feature in the image

31

FULL CNN: CONV BLOCKS + DENSE MLP STAGE
• generally after the convolutions the output of the convolutional layers is connected via a flattening layer

with one or more dense layers (DNN), that are used to optime objectives: class scores (classification),
mapping (regression), etc…

32

Example: LeNet (Yan LeCun)
multi-staged CNN for classification: (Conv2D+MaxPooling)x2 + 2xDense + output layer (soft max)

detects details
(segments, arcs, …)

focus on overall
shapes

maps high level
representations to targets

MODERN CNNs

33

philosophy: deeper is better …

• AlexNet: better backdrop via ReLU, dropout, batch normalisation, data augmentation

• VGG: smaller 2D kernels(3x3) with more convolutional blocks to induce more non-

linearity and so more degree of freedom for the network

• GoogleNet (Inception):

Inception module:

- 2D convolutions with different kernel sizes process the same input and then are concatenated

- multi-level feature extraction at each step: general features captured by 5x5 at the same time

with local ones captured by 3x3

- additional intermediate classification tasks to inject gradient in intermediate layers …

ResNet and DenseNet

34

going deeper increase the vanishing gradient problem

residual learning in ResNet help mitigating it

estreme extension of the idea: connect entire blocks of layers to one another

helps in diversifying the features within these blocks

DenseNet

Block

 …. continue for 152 layers
ResNet-152

60 MPar

- main difference were ResNets is that feature maps are  
concatenated instead of added (better feature reuse but requires
transition downsampling layers to keep same size in feature maps)

- to avoid memory explosion use 1x1 bottlenecks

specialized evolution: UNet
architecture, CNN for image
segmentation and denoising
(see specific lectures on
object-detection)

ANN ARCHITECTURES FOR UNSUPERVISED REPRESENTATION LEARNING: AUTOENCODERS

• non-supervised algorithm that try to identify common and fundamental characteristic in the input data

• combines an encoder that converts input data in a different representation, with a decoder that

converts the new representation back to the original input

• trained to output something as close as possible to the input (i.e to learn the identity function)

35

• “trivial” unless to constrain the network to learn a
“compressed” latent representations (in the example:
x∈R5→z∈R3), able to capture “high-level” features of the data

input 
v(5)

output = input
bottleneck

ENCODER DECODER

AUTO-ENCODER  
IMPLEMENTATION

36NOTE: L do not depends on dataset labels (unsupervised learning)

x z x̂

L(x, ̂x) = ∥x − ̂x∥2

gϕ(x) : Rd → Rz

fθ(z) : Rz → Rd

ϕ*, θ* = arg max
ϕ,θ

1
N ∑ L(x(i), ̂x(i)) =

= arg max
ϕ,θ

1
N ∑ L(x(i), fθ(gϕ(x))

L(x, ̂x) = − ∑
D

[xk log(̂xk) + (1 − xk)log(1 − ̂xk)]or

ENCODER: x→z

DECODER: z→x

trained so that: Output ≃ Input

ARCHITECTURES FOR SEQUENCES: RECURRENT NEURAL NETWORKS

• RNN are specific ANN architectures optimised to identify long-term correlations in sequence of
informations of variable lengths (example: natural language processing, signal processing, time
series forecasting, etc…)

• typical task for a RNN: given a sequence of features (text, music, … a list of charged tracks
parameters), predict one or more targets (the next word on a phrase, the weather in the next
24h, the flavour of a hadron jet in an hep experiment, …)

• a RNN is able to:

• takes in input sequences of variable length

• keep track of dependences between elements thatare distant  
in the sequence

• keep information on the order between the elements of the sequence

• use shared weights so that identified correlations between elements  
can be transferred in diverse points of the sequence

37

 ANN

38

L
→ FORWARD PASS

ŷ

ht

̂yt = Wt
hyht

=

ht = fw(ht−1, xt) =

= tanh(Wt
hhht−1 + Wt

xhxt)

old-state

sequence input at step t

• a RNN processes the input in a loop (recurrent connection) that allows the persistence of the informations during
the entire processing of the sequence’s elements

• base module: A is a NN that analyse the t element of the input sequence xt and produce the output ht (hidden
state). ht is passed to the same network during the processing of the next element of the sequence

the same function fw with the same set
of weights is used to process each

element t of the sequence …

can be thought of as a
series of multiple copies
of the same conventional

neural network, each
passing a message to its

successor

RNN IMPLEMENTATION

 ANN

RNN AND LONG TERM DEPENDENCIES

39

- in RNNs unbounded activations (like ReLU) cannot be
used as they create instabilities

- tanh or sigmoid are OK but suffers vanishing of the
gradient

problem solved in LSTM RNN (Hochreiter, '97) with a "software trick": uses four neural layers which interact in
such a way to implement a sort of parallel data-flow which at each step t makes the information from previous
steps available w/o being affected by gradient dilution

key element: cell-state Ct

is a memory units (“conveyor belt”) to which is
possibile to add or subtract information using
“gate” structuresht

CtCt−1

ht−1

LONG SHORT TERM MEMORY NETWORKS

40

output ∈[0,1]:

every LSTM has 3 gates:

- f: forget gate (controls deleting from the cell-state)

- i: input gate (controls writing on the cell-state)

- o: output gate (controls the output on ht)

gate: NN-layer with sigmoid activation and a point-wise multiplication

the backprop from Ct →Ct-1 doesn’t requires multiplications for tanh/sigmoid → no gradient dilution …

every publication implementing a LSTM has used a slightly different version of the original algorithm, so
you’ll find it with different names …

GRU (Gate Recurrent Unit):
combines the gates and unify
hidden state with cell-state to
simplify model and number of
parameters (one of the most

used RNNs)

LSTM with “peephole”:
gate layers can see the

cell-state

ht

Ct
Ct−1

ht−1

VARIATIONS

41

Stacked RNNs

enables more complex representation

capturing information at different scales

Bidirectional RNNs

inputs are processed in both forward

and reverse time order

allows a BRNN to look at future

context as well

VARIATIONS

42

Encoder-Decoder RNNs

sequence2sequence: uses an RNN to generate
a context vector that encode the whole input
sequence and a separate RNN to generate
another sequence from the encoded context

often used in machine translation

encoder

decoder

KEEP IN TOUCH …

43

This activity is partially supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and
Quantum Computing, funded by European Union – NextGenerationEU, and by PNRR MUR project PE0000013-FAIR

https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
https://orcid.org/0000-0001-9192-3537

