Machine Learning for Applications in Medical Physics

Piernicola Oliva Università di Sassari & INFN Cagliari

oliva@uniss.it

Artificial Intelligence applications in Healthcare

Legend: HER, Electronic Health Records; NIPT, noninvasive prenatal test

[J. He et al., The practical implementation of artificial intelligence technologies in medicine, Nature Medicine 25, 30–36 (2019)] 2

Medical Imaging: there are many techniques based on different physical principles

Medical images are more than pictures!!! **3** 3

Image processing and analysis techniques can help:

- to improve image visualization
- to detect abnormalities in diagnostic images (lesions, etc.)
- to follow up pathological conditions (growth rate of lesions)
- to evaluate the efficacy of treatment

Computer Aided Detection/Diagnosis (CAD) systems or Decision Support Systems (DSS) are developed to assist clinicians in their tasks, not to replace them! Artificial Intelligence (AI) methods used in the development of DSS:

- In the 90s Old-fashion systems (rule-based)
	- Since the 2000s Hand-crafted feature and Machine Learning classification (Radiomics and ML)

○ Since 2015 – Deep-Learning image classification

Automated detection of lung nodules in CT images

CAD system for lung nodule detection

3D input

A **majority criterion** is adopted to assign candidates to either the "nodule" or the "healthy tissue" class

output

8

- Azienda Ospedaliera Universitaria Pisana (AOUP) and the Radiology Dep. of Pisa University - Bracco Imaging S.p. A.

M5L lung CAD on-demand

Lung nodule detection SW developed by INFN MAGIC-5 and M5L projects

- → laboratory performance: **80%** sensitivity to nodules **@ 5 FP/exam**
- → **clinical validation**

Assisted reading improves nodule detection by +7% in the per-patient analysis

MAGIC-5 and M5L project leader: P. Cerello, INFN, Turin

Collaboration with Candiolo Cancer Institute-FPO, IRCCS and Univ. of Turin

The AIM working group on lung CT analysis (AIM-Covid19-WG)

Objective: Automatic quantification of lung involvement on CT scans. An index of severity of lung involvement has been defined [Yang, Radiology, 2020]: **CT-Severity Score (CT-SS)** CT-SS= **1** (<5%), **2** (5%-25%), **3** (25%-50%), **4** (50%-75%), **5** (>75%)

Steps for the automatic quantification of lung involvement in CT scans

==> Deep learning segmentation methods need thousands of annotated cases to be "transferred" to accomplish this task

• Even only pure quantification modules, once properly validated, could be valuable tools for clinicians to set up large-scale population studies based on Radiomics

Network architecture and available datasets

Input (3D, 16-bit data): CT data resampled to 200x150x100 arrays Target: 200x150x100

The **U-Net architecture** is outperforming other methods in most segmentation tasks about 17 M trainable parameters

We used only **public datasets** with annotations (in part collected for other clinical purposes)

[1] <https://covid-segmentation.grand-challenge.org/>

- [2] <https://mosmed.ai/>
- [3] <https://www.cancerimagingarchive.net/>
- [4] <https://zenodo.org/record/3757476>

LungQuant: a sequence of two U-nets to segment lungs and COVID-19 lesions on CT scans

[Lizzi, F. *et al* (2021). Making data big for a deep-learning analysis: Aggregation of public COVID-19 datasets of lung computed tomography scans. *Proceedings of the 10th International Conference on Data Science, Technology and Applications, DATA 2021*, (Data), 316–321. https://doi.org/10.5220/0010584403160321] [Lizzi, F., Agosti, A., Brero, F., Cabini, R. F., Fantacci, M. E., Figini, S., … Retico, A. (2021). Quantification of pulmonary involvement in COVID-19 pneumonia by means of a cascade of two U-nets: training and assessment on multiple datasets using different annotation criteria. *IJCARS,* https://link.springer.com/article/10.1007/s11548-021-02501-2]

The *LungQuant* system performance

F. Lizzi et al. IJCARS, doi: 10.1007/s11548-021-02501-2

Test on the COVID-19-CT-Seg benchmark set of 10 fully annotated CT scans

Blue: U-net lung mask best Blue. D-net lung mask and the worst worst Green: reference lesion segmentation

Dice coefficients:

$$
Dice_{metric} = \frac{2 \cdot |M_{true} \cap M_{predict}}{|M_{true}| + |M_{pred}|}
$$

0.95 ± 0.01 for lung segmentation 0.66 ± 0.13 for lesion segmentation

International Journal of Computer Assisted Radiology and Surgery https://doi.org/10.1007/s11548-021-02501-2

ORIGINAL ARTICLE

Quantification of pulmonary involvement in COVID-19 pheumonia by means of a cascade of two U-nets: training and assessment on multiple datasets using different annotation criteria

Francesca Lizzi^{1,2} e - Abramo Agosti⁶ - Francesca Brero^{4,5} - Raffaella Fiamma Cabini^{4,6} Maria Evelina Fantacci^{2,3} · Silvia Figini^{4,11} · Alessandro Lascialfari^{4,5} · Francesco Laruina^{1,2} · Piernicola Oliva^{8,9} · Stefano Piffer^{7,10} · Ian Postuma⁴ · Lisa Rinaldi^{4,5} · Cinzia Talamonti^{7,10} · Alessandra Retico²

Clinical validation:

Scapicchio C. *et* al.,A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia, European Radiology Experimental, (2023) 7:18

Deep Learning vs. traditional Machine Learning approaches

- Deep Neural Networks are replacing traditional handcrafted feature extraction + ML approaches in many Medical Physics applications
	- **Pros:**
		- No prior selection of problem-related features \implies no loss of information
	- **Cons:**

Critical aspects of DL use in medical image analysis

Problems with clinical data

- Annotation of the dataset (ground truth)
- Inadequate dataset size
	- Appropriate size for DL/ML training
	- Sampling bias
	- Unknown dimension
	- Batch effect

Problems of the software

- Reliability (out of the lab)
- **Explainability of the results**

The "true label" problem

- Data need to be annotated!
- Data annotation by human experts is an extremely time-consuming task, which may require:
	- \circ the collection of additional information stored in other data storing systems,
	- expertise in segmenting meaningful regions in images,
	- specific knowledge to assign class labels.
- In the medical imaging field, segmentation of organs or lesions can be affected by inter- and intra-reader variability.

- Datasets are often evaluated by **only one human expert**
- Gathering data and annotations from many sources increases the heterogeneity of the sample

The "true label" problem: an example from COVID-19

Scapicchio C. *et* al.,A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in COVID-19 pneumonia, European Radiology Experimental, (2023) 7:18 https://doi.org/10.1186/s41747-023-00334-z

The "unobserved dimensions" problem

- there are several unobserved variables with relevant implication in the data (if they were observed)
- rules learned on the dataset are not trustworthy
	- Examples:
		- **Gender**
		- **Ethnicity**
		- **Comorbidities**

The sampling bias

- Also for a defined pathology, significant differences may occur in in-patient statistics both among nations and within centers
- Several factors affect these differences, which are difficult to control, in particular in retrospective studies:
	- Regional differences in population
	- Different acquisition systems and procedures
	- Small size of the datasets
- Multicentric datasets may help to reduce this problem 20

Multicentric dataset in Autism Spectrum Disorders

Autism spectrum disorder (ASD)

- ASD is a heterogeneous neurodevelopmental condition with a consistently high prevalence worldwide.
- Early diagnosis is crucial for intervention
- ML techniques have been widely used on MRI data, with the goal of identifying the main brain areas involved and consequently facilitating the diagnostic process.
- In this field, large datasets are often obtained by collecting images from different centers

Dataset

• The Autism Brain Imaging Data Exchange (ABIDE)

ism Brain Imaging Data Exchange

- Public dataset, 24 collection centers
- MRI, structural and functional
- Retrospectively collected data
- More than 2000 subjects (equally divided between ASD and TD)
- Ages: 5-64 years

http://fcon_1000.projects.nitrc.org/indi/abide/

Harmonization of multicenter data in the study of Autism Spectrum disorders (ASD)

Caltech 51456 mprage.nii

Data gathered by different scanner and/or acquisition systems encode the site "signature", which can confound ML algorithms and hide subtle information of interest.

NYU-2 OHSU

 0.70

OHSU **USM USM** $UM-1$

 0.63 0.97 0.96 1.00 1.00

> 0.99 0.96 0.98 0.98

ABIDE2 ABIDE1 ABIDE2 ABIDE1

 0.99 1.00 1.00 1.00 0.99

 1.00 0.98 0.99 0.99 1.00 $UM-2$

0.98

 0.98

 1.00

ABIDE2 ABIDE1 ABIDE1

NYU-1

ABIDE2

0.78 0.89 0.99 1.00 0.99 1.00 0.99

ABIDE2 **Autism Brain Imaging** $NYU-2$ ABIDE2 **Data Exchange** \overline{OHSU} ABIDE1 **(2200 MRI scans, 40** $OHSU$ ABIDE2 **acquisition sites) CMU 50642** \overline{USM} mprage.nii

ABIDE

CMU 50649

mprage.nii

NYU 50957

ML classifiers can easily distinguish brain features of subjects from site A vs. site B (AUC \sim 1). whereas barely distinguish ASD vs. controls (AUC~0.6).

NYU

ABIDE1

AUC

 NYU

ABIDE1 $NYU-1$

Elisa Ferrari^{a,*}, Paolo Bosco^b, Sara Calderoni^{b,c}, Piernicola Oliva^{d,c}, Letizia Palumbo^r, Giovanna Spera['], Maria Evelina Fantacci^{f,8}, Alessandra Retico¹

How to mitigate site effects?

The site contribution to can be modelled and discarded, while keeping interesting data dependencies (e.g. on age and sex)

22 *S. Saponaro, A. Giuliano, R. Bellotti, A. Lombardi, S.Tangaro, P. Oliva, S. Calderoni, A. Retico, Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: An example from the ABIDE dataset, NeuroImage: Clinical 35 (2022) 103082*

Harmonization

Site identification entity and all and Age dependence

Sites are sorted by increasing average age

Limited availability of annotated data: Transfer learning

In case of **small datasets** [*i.e.* when # of training examples $<<$ # of trainable parameters]

we can avoid training DL models from scratch and take advantage of the knowledge already acquired on other data and/or in other tasks

24

Transfer Learning

DenseNet121, ResNet50, Inception are widely used pretrained Deep Neural Networks. Typically, they are trained on ImageNet

[Xu et al. Current status and future trends of clinical diagnoses via image-based deep learning. *Theranostics*, *9*(25), 7556–7565 (2019)]

Transfer learning (TL)

Comparison of three different TL methods, using DenseNet121, and different training dataset sizes and different classification tasks.

Results:

- Traditional ML can perform better that DL for small datasets; if DL is used, TL performs better.
- Fine-tune performs better than feature extractor
- Features learned may not be as general as currently believed:
	- TL from models trained on similar images from different anatomical site is equivalent to using ImageNet
- TL is useful for small datasets $(N < 2000)$

25

[Romero et al. Targeted transfer learning to improve performance in small medical physics datasets. *Medical Physics*, *47*(12), 6246–6256 (2020)]

Limited availability of annotated data: Data augmentation

Synthetic data generation with GAN

Generative adversarial networks (GAN) can generate plausible images via the adversarial training of a generator **G** and a discriminator **D**.

- Adversarial training refers to the competition between the two networks **G** and **D**.
- An equilibrium is eventually reached, where the generator can approximate data from the target data distribution and the discriminator predicts "real" or "generated" for its input data with 50% probability.
- Realistic **synthetic data** can be generated by the generator via sampling the fixed distribution p(z) for data augmentation.

Fig. 5. (a) The diagram of a basic GAN, (b) Real CT images from the LIDC lung nodule dataset¹² and synthetic images generated by a GAN network.

Reliability of AI systems

- What happens when an AI algorithm trained for a specific task is executed on "inappropriate input data"?
	- Typically, it provides its prediction!!!

[Yi et al (2022). Can AI distinguish a bone radiograph from photos of flowers or cars? Evaluation of bone age deep learning model on inappropriate data inputs. *Skeletal Radiology*, *51*(2), 401–406. https://doi.org/10.1007/s00256- 021-03880-y]

- To avoid feeding an AI algorithm with a wrong input:
	- Image type/quality can be evaluated by another AI algorithm, and possibly discarded if not appropriate

[Fantini et al. (2021). Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging. Computerized Medical Imaging and Graphics, 90, 101897. https://doi.org/10.1016/j.compmedimag.2021.101897]

Outputs of a CNN trained to predict bone age from RX of left hands

Predicted Bone Age: 13 years, 9 months

Predicted Bone Age: 1 year, 1 month

Predicted Bone Age: 15 years, 11 months

Explainability

Trusting the algorithm

- AI systems are often seen as objective and unbiased
- their complexity and technical nature can make them seem more credible and trustworthy
- success in other scientific fields

This is unacceptable

- **For scientists**
	- **Lack of critical thinking**
	- **Needs to understand cause-effect relationship**

In clinical practice

- **For the same reasons!**
- **Ethical (and legal) issues in providing diagnosis by a back-box system**

Reliable XAI is still an open field…

- Medical imaging daily produces an incredible amount of digital information which is not fully exploited neither for diagnosis/therapy nor for research!
- Clinicians need to be supported by reliable, effective and easy-to-use DSS for diagnosing and monitoring a wide range of diseases
- The development of AI-based clinical DSS has multiple levels of complexity, thus it requires multidisciplinary skills
	- There is still lot of room to make original contributions in this field of research!

Thank you for your attention!

Contact: oliva@uniss.it Università di Sassari INFN, Sezione di Cagliari