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Artificial Intelligence applications in Healthcare

Diagnostics Therapeutics
» Clinical and multi-omics data: * EHR data and clinical guidelines:
NIPT, early cancer detection, infectious Al-based treatment of common diseases
disease detection * Human-Al interaction in robotic surgery
* EHR data and expert knowledge: * Pharmacogenomics for guiding drug therapy
Al-based diagnosis and evaluation of » Data-driven precision medicine to deliver
common diseases therapies guided by clinical and digital
* Image data and deep learning: phenotypes
Expert-level diagnosis of medical images ~ -
L and screening of diseases ) Applications of
Al in healthcare
s N

Administration and regulation

Population health management
[ = g * Big data in hospital management,

 Patient-centered information systems for insurance, epidemiology, drug interactions
healthy lifestyle promotion, early disease and complications, quality-based outcome
detection, public education assessments, disease monitoring
(. v,

Legend: HER, Electronic Health Records; NIPT, noninvasive prenatal test

[J. He et al., The practical implementation of artificial intelligence technologies in medicine, Nature Medicine 25, 30—-36 (2019)] 5



Medical Imaging: there are many techniques based

on different physical principles

| CT MRI/ fMRI Nuclear Ultrasound
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metabolic tracer X-ray
emission

sound waves

X-ray X-ray magnetic spin

Medical images are more than pictures!!!



Decision Support Systems (DSS) for Detection/Diagnosis

Image processing and analysis
techniques can help:
to improve image visualization

to detect abnormalities in diagnostic
images (lesions, etc.)

- to follow up pathological conditions
(growth rate of lesions)

- to evaluate the efficacy of treatment

Computer Aided Detection/Diagnosis (CAD) systems
or Decision Support Systems (DSS)
are developed to assist clinicians in their tasks, not to replace them!



Historical overview

Artificial Intelligence (Al) methods used in the development of DSS:
O Inthe 90s - Old-fashion systems (rule-based)
O Since the 2000s - Hand-crafted feature and Machine Learning classification (Radiomics and ML)

O Since 2015 — Deep-Learning image classification
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Automated detection of lung nodules in CT images




CAD system for lung nodule detection

Image
preprocessing
(filtering, lung

\ segmentation) )

Nodule
candidate
identification

False positive
reduction
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CAD outSut

CAD inpuf



* Enhancement of spherical objects and suppression of elongated and planar structures A majorlty criterion is adopted to assign
. . [LiQ Sone S, Doi K. Med Phys (2003)] candidates to either the “nodule” or the “healthy
*  Multi-scale dot-enhancer (MSDE) filter

tissue” class
Internal nodule

Voxel-wise classification of candidate
nodules with Machine Learning classifiers

internal
nodule
3D input
output

List of internal

nodule candidates
juxtapleural

"""""" nodule
( L4 1‘
@5 ¢ Pleura Surface Normal (PSN) filter

o : o normal A ?
tissue

Voxels classified

as nodule
-------- ) Voxels classified
: as normal tissue

MAGIC-5 and ML5
INFN projects
[2005-2010]

List of juxta-pleural
nodule candidates

The system was developed in collaboration with:

- Azienda Ospedaliera Universitaria Pisana (AOUP)

and the Radiology Dep. of Pisa University 8
- Bracco Imaging S.p. A.



M5L lung CAD on-demand

Lung nodule detection SW developed
by INFN MAGIC-5 and M5L projects
— laboratory performance: 80%

sensitivity to nodules @ 5 FP/exam
— clinical validation

Assisted reading improves
nodule detection by +7%
in the per-patient analysis

MAGIC-5 and M5L project leader:
P. Cerello, INFN, Turin

Collaboration with Candiolo Cancer Institute-FPO,

IRCCS and Univ. of Turin

European Radiology
https//doi.org/10.1007/500330-018-5528-6

COMPUTER APPLICATIONS
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A cloud-based computer-aided detection system improves identification
of lung nodules on computed tomography scans
of patients with extra-thoracic malignancies
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Abstract
Objectives To compare unassisted and CAD-assisted detection and time efficiency of radiologists in reporting lung nodules on
CT scans taken from patients with extra-thoracic malignancies using a Cloud-based system.

MS5L Lung CAD on-demand https://m5l.to.infn.it/
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The AIM working group on lung CT analysis (AIM-Covid19-WG)

Objective: Automatic quantification of lung involvement on CT scans.

An index of severity of lung involvement has been defined [Yang, Radiology, 2020]: CT-Severity Score (CT-SS)
CT-SS=1 (<5%), 2 (5%-25%), 3 (25%-50%), 4 (50%-75%), 5 (>75%)
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Steps for the automatic quantification of lung involvement in CT scans

3 r Quantification of lung
Lung volume ; parenchyma affected
segmentation by COVID-19 lesions

na

« Quantitative information on the amount of Covid-19

related lesions and their distribution, possibly
appearance is _combine_d with clinical and epidemiological pat_ient’s
strongly affected by information, may be r,elevar]t.to s.et up predlct!ve
COVID-19 lesions mod_els_ for patients’ stratification, prognosis
prediction, etc.

Classical algorithms
for lung segmentation
fail when lung

« Even only pure quantification modules, once properly
validated, could be valuable tools for clinicians to set
up large-scale population studies based on
Radiomics 11

==> Deep learning segmentation methods
need thousands of annotated cases to be
“transferred” to accomplish this task




Network architecture and available datasets

:jnput (3D, 16|-t::ilt data): CT We used only public datasets with annotations
ata resampled to : in part collected for other clinical purposes
200x150x100 arrays Target. 200X150X1OO ( P purp )
arrays; 2-bit data
. DATASETS Clinical Number Lung Lesion CT-SS
g ranspone| |1 = motivation of cases mask mask
3 Z COVID-19- COVID-19 199 No Yes No
3 3 Challenge [1] pandemic
15 e MosMed COVID-19 1110 Yes, Yes, Yes
e channet [2] pandemic only for only for
91 CTs 50 CTs
32 channels q (made in
1075050 o house)
TCIA-Plethora Lung/pleura 402 Yes No No
ConvaD .
E;cha?\:wzeés E;Uclﬂ;;l\;e;s [3] dISGaSGS
iii — i TCIA-LCTSC Lung Lung cancer 60 Yes No  No
iii . D segmentation [3]
et T rers @;';;“e"t'w‘“ COVID-19-CT-Seg COVID-19 10 Yes Yes  Yes
e ss e > fofr%::r;r::icl:ie%n Benchmark [4] pandemic
512 channels features

12896

[1] https://covid-segmentation.grand-challenge.org/

[2] https://mosmed.ai/

[3] https://www.cancerimagingarchive.net/

[4] https://zenodo.org/record/3757476 12

The U-Net architecture is outperforming
other methods in most segmentation tasks
about 17 M trainable parameters



https://covid-segmentation.grand-challenge.org/
https://covid-segmentation.grand-challenge.org/
https://covid-segmentation.grand-challenge.org/
https://covid-segmentation.grand-challenge.org/
https://covid-segmentation.grand-challenge.org/
https://mosmed.ai/
https://www.cancerimagingarchive.net/
https://zenodo.org/record/3757476

LungQuant: a sequence of two U-nets to segment lungs and COVID-

19 lesions on CT scans

The LungQuant system

Input CT
Unet,: Lung Lung —- Bounding-box Unet,: Lesion
Segmentation refinement containing lungs segmentation
Lung < COVID-19
Mask Mask

|—} CT Severity Score 4-—|

[Lizzi, F. et al (2021). Making data big for a deep-learning analysis: Aggregation of public COVID-19 datasets of lung computed tomography scans. Proceedings
of the 10th International Conference on Data Science, Technology and Applications, DATA 2021, (Data), 316—321. https://doi.org/10.5220/0010584403160321]
[Lizzi, F., Agosti, A., Brero, F., Cabini, R. F., Fantacci, M. E., Figini, S., ... Retico, A. (2021). Quantification of pulmonary involvement in COVID-19 pneumonia
by means of a cascade of two U-nets: training and assessment on multiple datasets using different annotation criteria. [JCARS,
https://link.springer.com/article/10.1007/s11548-021-02501-2]
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The LungQuant system performance

® [coronacases_009] ® [coronacases_003]

File Edit View Analysis ROl Image Plugins Window TeSt On the COVID—lg—CT—Seg benchmark Set File Edit View Analysis ROl Image Plugins Window
of 10 fully annotated CT scans

Blue: U-net lung mask
best :
— Red: U-net lesion mask Wor_st>
Green: reference lesion segmentation

Dice coefficients:

2- |ﬂ/irt'rue N jVir;o'r.c',dz'e’:t|
|ﬂ/irt'rue| + |ﬂ4—pred|

Dicemetr ic —

0.95 + 0.01 for lung segmentation
0.66 + 0.13 for lesion segmentation

Intemational Journal of Computer Assisted Radiology and Surgery
https://doi.org/10.1007/s11548-021-02501-2

ORIGINAL ARTICLE

uuuuuu

Quantification of pulmonary involvement in COVID-19 pneumonia by Clinical validation:
means of a cascade of two U-nets: training and assessment on multiple Scapicchio C. et al.,A multicenter evaluation of a
F. Lizzi et al. IJCARS, datasets using different annotation criteria deep learning software (LungQuant) for lung
doi: 10.1007/s11548-021-02501-2 Francesca Lizzi' 25 - Abramo Agosti® - Francesca Brero®S . Raffaella Fiamma Cabini%$ . parenchyma characterization in COVID-19
Maria Evelina Fantacci? - Silvia Figini*'" - Alessandro Lascialfari** - Francesco Laruina'? - Piernicola Oliva®® - . . .
stefano Piffer’'® - lan Postuma® - Lisa Rinaldi** - Cinzia Talamonti’-'° . Alessandra Retico? pneumonia, European Radl0|ogy EXperImental,

(2023) 7:18



Deep Learning vs. traditional Machine Learning approaches

e Deep Neural Networks are replacing traditional handcrafted feature extraction + ML
approaches in many Medical Physics applications

o Pros:
m No prior selection of problem-related features = no loss of information
o Cons:

e Larger and larger samples of annotated data are needed to train the models

e Deep Neural Networks are black boxes: which image features are relevant for making a
decision?

Data augmentation

Model interpretability, explainable Al

Mandatory in

medical applications




Critical aspects of DL use in medical image analysis

Problems with clinical data Problems of the software
e Annotation of the dataset (ground e Reliability (out of the lab)
truth)

e Explainability of the results
e Inadequate dataset size

o  Appropriate size for DL/ML training
o Sampling bias
o Unknown dimension

o Batch effect

16



The “true label” problem

Data need to be annotated!
Data annotation by human experts is an extremely time-consuming task, which

may require:
o the collection of additional information stored in other data storing systems,
O  expertise in segmenting meaningful regions in images,
O  specific knowledge to assign class labels.

In the medical imaging field, segmentation of organs or ‘Reader 1
lesions can be affected by inter- and intra-reader variability.

Reader 2

Datasets are often evaluated by only one human expert

Gathering data and annotations from many sources increases the

heterogeneity of the sample 17



The “true label” problem: an example from COVID-19
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Scapicchio C. et al.,A multicenter evaluation of a deep learning software (LungQuant) for lung parenchyma characterization in 18
COVID-19 pneumonia, European Radiology Experimental, (2023) 7:18 https://doi.org/10.1186/s41747-023-00334-z



The "unobserved dimensions” problem

e there are several unobserved A ’
variables with relevant implication in M
the data (if they were observed) =
e ruleslearned on the dataset are not « I
trustworthy é o
o / %
o Examples: (qeé ./
m Gender '/ﬁﬁ =
m Ethnicity hee >

observed
m Comorbidities

19



The sampling bias

e Also for a defined pathology, significant A
differences may occur in in-patient statistics
both among nations and within centers true, unknown population

) distribution

e Several factors affect these differences,
which are difficult to control, in particular in
retrospective studies:

my sample

o Regional differences in population

o Different acquisition systems and procedures -

o Small size of the datasets
e Multicentric datasets may help to reduce
this problem 20



Multicentric dataset in Autism Spectrum Disorders

Autism spectrum disorder (ASD) Dataset i&agg

-

« ASD is a heterogeneous neurodevelopmental «  The Autism Brain Imaging Data ABIDE
condition with a consistently high prevalence Exchange (ABIDE) Autism Brain Imaging

. Data Exchange
worldwide. _ _
 Public dataset, 24 collection centers

» Early diagnosis is crucial for intervention _
* MRI, structural and functional

» ML techniques have been widely used on _
MRI data, with the goal of identifying the *  Retrospectively collected data

main brain areas involved and consequently . More than 2000 subjects (equally
facilitating the diagnostic process. divided between ASD and TD)

* In this field, large datasets are often obtained

A :  Ages: 5-64 years
by collecting images from different centers

http://fcon_1000.projects.nitrc.org/indi/abide/
21



Harmonization of multicenter data in the study of Autism

Spectrum disorders (ASD)

Data gathered by different scanner and/or acquisition
systems encode the site “signature”, which can
confound ML algorithms and hide subtle information of

How to mitigate site effects?
The site contribution to can be modelled and discarded, while
keeping interesting data dependencies (e.g. on age and sex)

Caltech_51456_

mpregenil - intarest.
-
@ AR
. §§§?‘:2 AUC | \2io: | A2 | ABiDE? | ABMDE! |ABiDE? | aBInE+ |ABIDE2 | aRiE1 |aBbes Y*ijk = (Yijk — fx (xij, Zjj, wij) — g¥) [ dF + fi (xij, Zij, Wij)
Caltech_51463_ A'E-l.gE vy 078 | 0.89 | 0.99 [ 1.00 | 0.99 | 1.00 | 0.99 | 0.98 ¢ l l
mprage.nii Pl 0.70 | 0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 i | . |
Autism Brain Imaging gg:z 100 | 098 | 059 | 0es | 1.00 | 1.00 no_n— Inear ocation scale
£ Data Exchange onsy 063 | 0.97 | 096 | 1.00 | 1.00 function of age,
(@ (2200 MRI scans, 40 —oo=! - - : : - sex, TIV
CMU_50642_  acquisition sites) £BIDE T | 099096 | 098 | 098 10
mprage.nii L - lo75 | 099 | 099 The case vs
ML classifiers can easily distinguish brain features = control sepa.ration
of subjects from site A vs. site B (AUC ~1), ability of the ML
CMU_50649_ whereas barely distinguish ASD vs. controls % 0 classifiers is
MpEAgE (AUC~0.6). Lo
e ] _S|gn|f|cantly
";‘; Contents lists available at ScienceDirect é—’ a lmproved
- Chance

KKI_50778_mprage.

r

NYU_50957_
mprage.nii

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com

Dealing with confounders and outliers in classification medical studies: The M)
Autism Spectrum Disorders case study =

Elisa Ferrari™", Paolo Bosco’, Sara Calderoni™, Piernicola Oliva’*, Letizia Palumbo',

Giovanna Spera', Maria Evelina Fantacci"’, Alessandra Retico

0.2

Mean ROC-Raw data (AUC = 0.58 * 0.04)

Mean ROC-Harmonized data (AUC = 0.67 + 0.03)
#* 1 std. dev.

+ 1 std. dev.

0.2

0.4 0.6 0.8 10
False Positive Rate

S. Saponaro, A. Giuliano, R. Bellotti, A. Lombardi, S.Tangaro, P. Oliva, S. Calderoni, A. Retico,
Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in
barely separable populations: An example from the ABIDE dataset, Neurolmage: Clinical 35
(2022) 103082



Harmonization

Site identification Age dependence

Not harmonized Harmonized

Not harmonized Harmonized

Ih_MeanThickness

=2

Sites are sorted by increasing average age

23



Limited availability of annotated data: Transfer learning

In case of small datasets "\ F o

[i.e. when # of tralnlr_lg = _H' —a—y _{33% o
examples << # of trainable -. [y :
parameters | ) 0.1% spoon
we can avoid training DL F i 8

mOdels from SCI'atCh and take ImageNet Database Convolution layers Full connectionlayers  Predicted labels
advantage of the knowledge

already acquired on other data

and /Or in Other ta.SkS Trained Weights Transfer Train from scratch

v

il e

( Finetune L 64% Normal |
- l I I r 33% Benlgn

' 0. 1% Malignant

,/

" Transfer Learning

DenseNetl121, ResNet50,
Inception are widely used
pretrained Deep Neural

Net\_NorkS' . Medical Image database Convolution layers Full connectionlayers  Predicted labels
Typically, they are trained on
ImageNet o4

[Xu et al. Current status and future trends of clinical diagnoses via image-based deep learning. Theranostics, 9(25), 7556—7565 (2019)]



https://paperswithcode.com/dataset/chestx-ray14

-

Transfer learning (TL)

| Atelectasis Cardiomegaly Effusion Infiltration Nodule Pneumonia  Pneumothorax

Comparison of three different TL methods, using

_ o ) Traditional ML vs DL (w and w/o TL) Different TL methods
DenseNet121, and different training dataset sizes % Hernia 5 Chest x-ray 14
. . g . —— DL with no transfer learnin p— ature extractor
and different classification tasks. DL weh ranser leoring e
09 - LR on radiomic features 0.9
—=— grad. unfrezing with disc. Ir
08 0.8 (orange points are very close to
" S £ ST ° green ones)
Results: | _——
. 0.6
® Traditional ML can perform better that DL for ’ m “/_,a_f‘\/\/:/\/—’/‘“
small datasets; if DL is used, TL performs = -
better [ 500 1000 1500 2000 0 250 500 750 1000 1250 1500 1750 2000

# training samples

Chest x-ray 14

® Fine-tune performs better than feature L0 ——
extractor S 0.91 —== MURA CheXpert: Chest X-ray
Similarity —+— Imagenet images
between = mopreranea|| RS Musouloskeletal RX
® Features learned may not be as general as 07] e

source § images (elbow, finger,

currently believed: and target 5, M forearm, hand, humerus,

O TL from models trained on similar images datasets  os| ihould’e\lr, and wrislt}
from different anatomical site is equivalent oal mageNet: natural images
to using ImageNet 0 250 500 750 1000 1250 1500 1750 2000

® TL is useful for small datasets (N < 2000)
[Romero et al. Targeted transfer learning to improve performance in small medical physics datasets. Medical Physics, 47(12), 6246—6256 (2020)]



Limited availability of annotated data: Data augmentation

Synthetic data generation with GAN @

Generative adversarial networks (GAN) can
generate plausible images via the adversarial
training of a generator G and a discriminator D.

Is x real or
generated ?

Adversarial learning

® Adversarial training refers to the competition

between the two networks G and D. (b) Real image Synthetic image

® An equilibrium is eventually reached, where the
generator can approximate data from the target data
distribution and the discriminator predicts ‘real’ or
‘generated’ for its input data with 50% probability.

® Realistic synthetic data can be generated by the

generator via sampling the fixed distribution p(z) for
data augmentation.

Fig. 5. (a) The diagram of a basic GAN. (b) Real CT images from the LIDC lung nodule dataset'? and synthetic images generated by a GAN network.

[Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., & Haworth, A. (2021). A review of medical image data augmentation techniques fordeep 24
learning applications. Journal of Medical Imaging and Radiation Oncology, 65(5), 545-563. https://doi.org/10.1111/1754-9485.13261]



Reliability of Al systems

°® What happens when an Al algorithm trained for a Outputs of a CNN trained to predlc bone age from RX of left hands

specific task is executed on “inappropriate input
data”?

O Typically, it provides its prediction!!!

[Yi et al (2022). Can Al distinguish a bone radiograph from photos of flowers
or cars? Evaluation of bone age deep learning model on inappropriate data

Predicted Bone Age: Predicted Bone Age: Predicted Bone Age:

inputs. Skeletal Radiology, 51(2), 401—-406. https://doi.org/10.1007/s00256- 13 years, 9 months 1 year, 1 month 15 years, 11 months

021-03880-y]

Motion-free vs motion corrupted images

® To avoid feeding an Al algorithm with a wrong input:

O Image type/quality can be evaluated by another Al
algorithm, and possibly discarded if not appropriate

[Fantini et al. (2021). Automatic MR image quality evaluation using a Deep CNN: A
reference-free method to rate motion artifacts in neuroimaging. Computerized Medical
Imaging and Graphics, 90, 101897.
https://doi.org/10.1016/.compmedimag.2021.101897] 27



Explainability

Trusting the algorithm This is unacceptable

Al systems are often seen as objective and ® For scientists

unbiased o Lack of critical thinking

i . . O Needs to understand cause-effect relationship
their complexity and technical nature can

make them seem more credible and e Inclinical practice

trustworthy o  For the same reasons!

success in other scientific fields o  Ethical (and legal) issues in providing
diagnosis by a back-box system

Human Computer
Interaction (HCI)

Human in the Loop

Future of XAl
in Healthcare

Explainable Intelligent

Systems

Reliable XAl is still an open field... 28



Conclusions

e Medical imaging daily produces an incredible amount of digital information
which is not fully exploited neither for diagnosis/therapy nor for research!

e Clinicians need to be supported by reliable, effective and easy-to-use DSS for
diagnosing and monitoring a wide range of diseases

e The development of Al-based clinical DSS has multiple levels of complexity,
thus it requires multidisciplinary skills

" There is still lot of room to make original contributions in this field of research!

29



Thank you for your attention!

AllVi

Contact: oliva@uniss.it
Universita di Sassari
INFN, Sezione di Cagliari
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