1110001111 11110101010 Autoencoders for VIRGO GW signal analysis 11001010101000111

L. Papalini¹ M. Razzano^{1,2}

L. Rei³

M. Serra⁴

M. Vacatello¹

Fourth ML-INFN hackathon

1. Università di Pisa 2. INFN Pisa 3. INFN Genova 4. INFN Roma

23/06/2023

10100010001

00101000100

11100101010100011

Gravitational Waves

Gravitational Waves

GW detectors

Detector noise

Autoencoders

Open access to GW public data

Hackathon Workflow

More about ML in GW research

...are propagating ripples in the fabric of spacetime, originated from **accelerating masses**, such as the inspiral of a binary black hole system.

Gravitational wave detectors

Gravitational Waves

GW detectors

Detector noise

Autoencoders

Open access to GW public data

Hackathon Workflow

More about ML in GW research

- GWs propagates through space at the speed of light;
 Their effect is an alternate *stretch* and *squeeze* of the distances between the masses;
 - We can user Michelson interferometers to detect them.

Detector noise

Gravitational Waves

GW detectors

Detector noise

Autoencoders

Open access to GW public data

Hackathon Workflow

More about ML in GW research

Many instrumental or environmental sources produce a strain equivalent noise.

Detection problem: our ability to extract the information about the astrophysical signal depends on how good we know the (statistical) properties of the noise.

If the data is **stationary** and **Gaussian**, we can fully characterize the noise from its **Power Spectral Density**, whos square root provides a measure of the *strain sensitivity*.

But this is true only in first approximation: *we need better modeling!*

Autoencoders

Gravitational Waves

GW detectors

Detector noise

Autoencoders

Open access to GW public data

Hackathon Workflow

More about ML in GW research

...are an unsupervised learning technique in which we leverage neural networks for the task of **representation learning**.

We force a compressed representation of the original input; if some sort of structure exists in the data, this can be learned and used for "de-noising".

- Dim(X') = Dim(X)
- Dim(Z) < Dim(X)

•
$$X' \to X$$

AIChE Journal. 37 (2): 233-243

Open access to GW public data

Gravitational Waves

GW detectors

Detector noise

Autoencoders

Open access to GW public data

Hackathon Workflow

More about ML in GW research

GW data is made available by the International Gravitational Wave Observatory Network (<u>IGWN</u>) and the GW Open Science Center (<u>GWOSC</u>).

- Strain data of GW events and observing runs;
- Tutorials to learn more about GW science;
- Software for signal analysis.

Hackathon workflow

Gravitational Waves

GW detectors

Detector noise

Autoencoders

Open access to GW public data

Hackathon Workflow

More about ML in GW research

- Download and explore GW data;
- Learn the basics of GW data processing and visualization;
- Create your autoencoder model;
- Experiment with hyperparameters: batch size, epochs, layers and regularization;
- Test it with random Gaussian data;
- Apply it to real GW data.

More about ML in GW research

100 0

2 BRMDORX

Gravitational Waves

GW detectors

Detector noise

Autoencoders

Open access to GW public data

Hackathon Workflow

More about ML in GW research

GWitchHunters citizen science project:

INDER REVIEW GWitch Hunters

https://www.zooniverse.org/projects/reinforce/gwitchhunters, or just (gwitchhunters zooniverse

00

Help us to improve our

Gravitational Wave detectors and unlock the secrets of the Universe!

Learn more

Google Search I'm Feeling Lucky

Mobile Challenge - Lasso that glitch

X