

After final fit, track quality is assessed with

Removing hits of found tracks reduce the combinatorial problem so that problematic tracks can be reconstructed within the CPU time budget.

(c) Tracking Performance using Tag&Probe Technique

- The tag and probe method (T&P) is a data-driven technique used to measure the efficiencies from data. It is based on the reconstruction of well-known resonances, such as Z boson.
 - Tag: a global muon (i.e. reconstructed using both the muon chambers and the tracker) with transverse momentum $p_T \ge 27$, associated to one leg of the resonance and with a single muon trigger.
 - > **Probe:** any standalone muon (i.e. reconstructed using only hits from the muon system) with at least one valid hit in the muon system (i.e. good track-hit χ^2).
 - > passing probe: The standalone muon is matched with tracks that fulfill minimum quality requirements in (Δ R < 0.3). The matching is defined by comparing the directions at the point of the closest approach to the beamline of the two tracks.
- The (tag + passing probe) and (tag + failing probe) lineshapes are fit separately with a signal + background model.
 - The efficiency is computed as the ratio between the "passing probes" and the total number of probes in the sample.

multiple levels using Kalman Filter, using the mkFit algorithm [2].

vectorization at

and

track classifier: from a Boosted Decision Tree to a Deep Neural Network [3].

The tracking fake rate using **mkFit** is lower than. the one obtained with the traditional CKF tracking algorithm Using **mkFit** allows to reduce the track building time by a factor of about 3.5 considering the sum of iterations where mkFit is used.

Parallelization

e the
stor of
um ofThe tracking fake rate when the
DNN is used is notably lower than
the one obtained using the BDT.

The tracking fake rate when the DNN is used is lower than the one obtained using the BDT across all the radii values, with a reduction of about 30%.

- Since the start of Run 3, the HLT makes use of a heterogeneous computing farm to run a version of the full event reconstruction optimized for fast processing.
- In Run 3, HLT tracking is based on a single iteration of the Combinational Kalman Filter, seeded by pixel tracks reconstructed by the Patatrack algorithm [4], which can be offloaded to GPUs.

Rat

Tracking Fake

누

Muon tracking efficiency calculated from $Z \rightarrow \mu + \mu$ - events using Tag-and-Probe technique for the subset of trajectories in which the CMS tracker is used to seed the measurement (**Tracker-only seeded tracks**) [6],[7].

The final reconstructed tracks include outside-in and more relaxed inside-out regional muon iterations iterations higher efficiency for muons.

Muon tracking efficiency calculated from $Z \rightarrow \mu + \mu$ - events using Tag-and-Probe technique for all reconstructed muon

Simulated Track η

Track η

Simulated Track η

The tracking efficiency (left), tracking fake rate (middle), and the track d_{xy} resolution are shown as a function of the simulated track pseudorapidity η for the Run-2 HLT tracking (blue) and the Run-3 HLT single-iteration tracking (red) [5]. With respect to the Run 2 HLT tracking, improved efficiency, improved impact parameters resolution, and noticeable fake rate rejection in the transition region between the barrel and the endcap.

Performance of tracking @ HLT

- The performance is measured using runs taken shortly before and after the first Technical Stop (TS1) of the LHC, when several updates in detector conditions took place:
- Increase in BPix L1 reverse bias high voltage (HV) from 150 V to 300 V.
- Update of the pixel cluster position estimator (CPE), as well as a new pixel detector gain calibration and a new tracker alignment.
- The HLT tracking efficiency and fake rate measured in data are defined with respect to offline tracks, i.e. tracks produced by the full offline event reconstruction, which satisfy high-purity track quality criteria [9].
- ✓ Differences in efficiency over the full η range are due to differences in efficiency in BPix L1 [9].

trajectories (All-tracks). [6],[7].

Thanks to the phase-1 pixel upgrade (adding one more layer of pixel measurements) and the new track seeding algorithm *based on Cellular Automaton (CA) technique* ⇒ increased efficiency after 2016

(*) old APV settings: pre-amplifier of the APV25 readout chip is saturated (20 fb-1 of 2016 data). new APV settings: APV setting changed for fast recovery (16 fb-1 of 2016 data) [8].

□Despite the challenging conditions at the LHC in Run 2 and in Run 3, the CMS Tracker has robust performance in a challenging environment ⇒ "high tracking and vertexing performance".

- Performances show a dependence of the detector as well as the algorithms used in the event reconstruction.
- The Phase-1 pixel upgrade has helped to cope with higher LHC delivered luminosity and the increased number of PU events during Run 2.
- In order to provide more precise and accurate track reconstruction sophisticated algorithms, techniques and calibrations have been developed for Run 3 which helped to cope with the excellent tracking efficiency.

✓ The increase in fake rate at high |η| is also observed in the HLT tracking performance with respect to simulation [5].

- The CMS Collaboration. "Description and performance of track and primary-vertex reconstruction with the CMS tracker". JINST, 9(10):P10009, oct 2014. URL <u>https://doi.org/10.1088/1748-0221/9/10/p10009</u>.
- 2. CMS Collaboration, "Performance of Run 3 track reconstruction with the mkFit algorithm" <u>CMS-DP-2022-018</u>
- 3. CMS Collaboration, "Performance of the track selection DNN in Run 3" <u>CMS-DP-2023-009</u>
- 4. Bocci, A., Innocente, V., Kortelainen, M., Pantaleo, F., & Rovere, M. (2020). "Heterogeneous Reconstruction of Tracks and Primary Vertices With the CMS Pixel Tracker". *Frontiers in Big Data*, *3*, 601728. <u>https://doi.org/10.3389/fdata.2020.601728</u>
- 5. CMS Collaboration, "Performance of Run-3 HLT Track Reconstruction" CMS-DP-2022-014
- 6. CMS Collaboration, "Muon tracking performance in the CMS Run-2 Legacy data using the tag-and-probe technique" CMS-DP-2020-035
- 7. CMS Collaboration, "CMS Tracking performance in Early Run-3 data using the tag-and-probe technique", <u>CMS-DP-2022-046</u>
- 8. M.J. French and et al. "Design and results from the APV25, a deep sub-micron CMOS front- end chip for the CMS tracker". Nucl. Instrum. Meth., 466(2):359–365, 2001. ISSN 0168-9002. doi: https://doi.org/10.1016/S0168-9002(01)00589-7.
- 9. CMS Collaboration, "Performance of Track Reconstruction at the CMS High-Level Trigger in 2022 data" CMS-DP-2023-028