VERTEX 2023 Sestri Levante - Poster Session

Material Measurement of an ATLAS Pixel Module via Multiple Scattering

Ignacio Asensi¹, Daniela Bortoletto², Marianne Brekkum¹, Florian Dachs¹, Valerio Dao¹, Hans Ludwig Joos^{1,3}, Simon Florian Koch², Antonín Lindner¹, Brian Moser¹, Abhishek Sharma¹, Ismet Siral¹, Carlos Solans¹, Yingjie Wei², Milou van Rijnbach^{1,4} on behalf of the ATLAS-ITk Collaboration

The idea

- Measurement of the fractional radiation length x/X_0 of an ITk hybrid pixel module through multiple scattering of low energy positrons in the material
- Scattering described by a Gaussian core with θ^{-4} Rutherford tails \rightarrow use a double sided crystal ball function

The telescope

- MALTA monolithic sensors with 36.4µm x 36.4µm pitch
- - Low material content down to 50µm •
 - Used as trigger source [coincidence of first and last plane] •
- ITkPix quad module [50µm x 50µm pitch] used as DUT on movable x-y stage [ITkPix size is 2cm x 2cm, MALTA size is 1cm x 1cm]

MALTA pixel planes

Measurement

ATLAS ITk-Pixel Preliminary Combined measurement, $E_{beam} = 1.2 \text{ GeV}$ $\langle x/X_{0} \rangle$ [%] = 0.84 ± 0.01 (reso.) ± 0.11 (E_{boom})

ITkPix Quad Module

The analysis

- Multiplet tracking algorithm [either with or without DUT] to extract the scattering angle θ
- Used projections of the scatter angle in x- and y-direction [two independent measurements that can be combined]
- Compared with ϕ -invariant angle

300µm Si 50µm Si

MALTA pixel planes

Expectation

ATLAS ITk-Pixel Preliminary Material budget estimate $\langle x/X_{0}\rangle$ [%] = 0.87

- Measured x/X₀ with sub-mm resolution and \bullet a 14% relative uncertainty
- SMD components and wirebond pads clearly visible \bullet
- Largest contributors are the HV filter capacitor, the power- \bullet and the data cable connectors
- Precision limited by the beam energy uncertainty \bullet

- analysis \rightarrow good agreement
- Acceptance corrections for telescope geometry
- Subtraction of air component based on reference measurement
- Subtraction of overlapping testbeam infrastructure components

The results

- Estimated expected x/X_0 map based on design drawings and component expectations
- Overall good agreement with the measurement

brian.moser@cern.ch

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

CERN