The Tracker System of LDMX

Pierfrancesco Butti

on behalf of the Light Dark Matter eXperiment Collaboration October 20th, Vertex 2023

U.S. DEPARTMENT OF

Stanford University

Evidence of Dark Matter in the Universe

- There is clear evidence for the existence of Dark Matter (DM) in the Universe
 - Observation of the rotation speed of spiral galaxies
 - Gravitational lensing
 - The Bullet Cluster
 - Cosmic microwave background

NASA, ESA, M.J. Jee and H. Ford

The Bullet Cluster 1E 0657-56

Messier 33 <u>arXiv:9909252</u>

Thermal Dark Matter Mass Range

arXiv:1707.04591 [hep-ph]

Thermal relics are an important class of dark matter where sub-GeV region is still relatively unexplored.

Thermal Dark Matter

- Assume DM in thermal equilibrium with SM in the very early universe
- Thermal DM as relic of the hot early Universe is one the most compelling paradigms
 - Generic and Predictive

$$\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle} \qquad \langle \sigma v \rangle = 3 \times 10^{-26} \ \frac{\mathrm{cm}^3}{\mathrm{s}}$$

Thermal Dark Matter

Since smaller cross sections result in DM overabundance, an accelerator experiment with $\sim 10^{16}$ electrons has generic ability to produce sub-GeV freeze-out thermal relics.

The Beamline: Linac to End Station A (LESA) at SLAC

- Low-intensity, multi-GeV electron beam (up to 10¹⁶ e- on target (EOT))
 - Single electron on target per event
 - Large beamspot (~20cm²) and high-repetition rate
- LCLS-II beam at SLAC:
 - Accelerates 186 MHz bunches
 - ~5k hours /year operation for photon science at
 ~930kHz: 99% of bunches to dump
- Sector 30 Transfer Line (S30XL) drives ~60% of unused low-charge bunches to LESA with LDMX as primary user

Background processes

- SM y Bremsstrahlung
- Vetoed by energy deposit in an electromagnetic calorimeter

- Challenging background:
 - Photo-Nuclear reactions producing neutral final states
 - Relative rate with respect to Bremsstrahlung $\sim 10^{-8} - 10^{-11}$

Kinematics at a Fixed Target Experiment

- A'→XX carry away most of the beam energy and escape undetected
 - Opposite behaviour for the bremsstrahlung emission

- Recoil electron p_T spectrum depends strongly on m_A for signal
 - Signal identification or extra-handle for background rejection

The LDMX Detector Concept

LDMX whitepaper: https://arxiv.org/abs/1808.05219

• Detector Design

- **Tagger Tracker** with low acceptance and high resolution at beam energy
- **Recoil Tracker** with large acceptance and high resolution at low particle momenta
- Electromagnetic calorimeter with excellent sensitivity and granularity
- Hadronic calorimeter with good
 segmentation and very low energy veto
 threshold for neutral hadrons
- **Trigger scintillator** for fast electrons-per-bunch counting

LDMX Tracker System Requirements

• Detector Design

• Tagger Tracker

precisely reconstruct the incoming electron momentum, rejecting off-energy ones Located before the target

• Recoil Tracker

reconstruct recoil electron (or eN products) with high acceptance and good resolution at low momentum Located after the target

The LDMX Tracker System: Modules

• Tracker System design

- Leverage experience, facilities and equipment from Heavy Photon Search SVT tracker built at SLAC
- Modules identical to the HPS SVT
 - $\circ \quad p\text{-in-n}^{+} \, type \, silicon \, microstrip$
 - 30 (60um) sensor (readout) pitch
 - up to 350 V bias
 - ~4 x 10 cm sensors, glued back to back
- Low material budget
 - Each sensor ~ 0.7% X₀
- CMS APV25 ASICs
 - Multi peak mode: 2ns time resolution
 - for LDMX 3 sample readout: up to ~100 kHz trigger rate
 - 5 (6) chips per sensor

APV 25 Chip

HPS SVT module

The LDMX Tracker System: Trackers

• Tagger Tracker:

• 7 double-strip layers, high p-resolution

 $(\sigma_u \sim 6 \text{ um } \sigma_v \sim 60 \text{ um})$

• 98.3 x 38.3 mm, 60um pitch, 639 ch, 5 APV25 chips

Layer	_1	2	3	4	5	6	7
z-position, relative to target (mm)	-607.5	-507.5	-407.5	-307.5	-207.5	-107.5	-7.5
Stereo Angle (mrad)	-100	100	-100	100	-100	100	-100
Bend plane (horizontal) resolution (μ m)	~ 6						
Non-bend (vertical) resolution (μ m)	~ 60	$\sim \! 60$					

• Recoil Tracker:

- 4 double-strip layers + 2 axial-only for increased acceptance.
- Back layers feature modules 78x48 mm², 62.5 um pitch
 -> 768 ch, 6 APV chips
- Dipole Fringe Field

Layer	1	2	3	4	5	6
<i>z</i> -position, relative to target (mm)	+7.5	+22.5	+37.5	+52.5	+90	+180
Stereo Angle (mrad)	100	-100	100	-100	-	-
Bend plane (horizontal) resolution (μ m)	≈6	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6
Non-bend (vertical) resolution (μ m)	≈60	≈ 60	≈ 60	≈ 60	-	-

Track Reconstruction - A common Tracking Software

- LDMX search requires high precision tracking
- LDMX leverages ACTS, modern library based on well-tested reconstruction from LHC experiments
 - Ties LDMX to the larger tracking community
 - As a small experiment \rightarrow focus on physics goals using well supported tools

Space point formation

Seed finding

Track candidates (Combinatorial Kalman Filter)

Tagger - Recoil matching

Tagger Tracker Performance

• Tagger Tracker offers **very precise incoming e⁻ momentum** determination

($\sigma_{\rm p} \sim 50~MeV$ @ E $_{\rm beam}$ = 4 GeV, $\sim 1\%$)

• Momentum expected to improve with deployment of GSF refitter, current under validation

- Extrapolation on target:
 - \circ $\sigma_{\rm X} \sim 7 \, {\rm um} \, \sigma_{\rm Y} \sim 90 \, {\rm um}$

Tagger Tracker - Off-energy electrons

- Estimated 10¹¹ off-energy electrons in the Tagger Tracker due to beam quality
- Most off-energy electrons bent out before reaching target
- Key importance remove off-energy electrons that mimic a 4 GeV electron trajectory

• High quality tracks with additional rectangular cuts show < 6 x 10⁻¹⁰ mis-reconstruction rate

Recoil Tracker - Performance

- Technical Efficiency = Reconstructible vs reconstructed particles
- >90% single e- efficiency down to ~100MeV
- Track finding under investigation to improve low pT electron efficiencies

Extends up to 45deg for higher masses

Recoil e- efficiency dependent on signal

kinematics

Recoil Tracker - Performance

• Track p_T provides signal discrimination handle

Recoil Tracker - Performance

 Track p_T provides signal discrimination handle Recoil tracker p_T resolution expected to meet the design requirement

Tagger-Recoil Matching and ECAL Extrapolation

- Track matching between tagger and recoil tracks
 - Combined σ_x (σ_y) of ~ 20um (~150 um)
- Possible to use tagger track hit on target as constraint

• Extrapolation to ECAL

 \circ $\sigma_x (\sigma_y)$ of ~ 50um (~500 um) > 1 GeV

Backgrounds Overview and Dedicated Vetoes

Gaussian energy fluctuations

Rare reactions → products escape ECal and/or anomalous energy deposition

Irreducible prompt ∉

Results

- Outstanding sensitivity in a mass range up to
- $m_{\chi}^{}$ < 100 MeV **LDMX** Simulation **LDMX** Simulation 10^{-7} 10 arxiv:2308.15173 $y=\epsilon^2 \alpha_D(m_{\chi}/m_{A'})^{\prime}$ Scalar relic target 10^{-8} (In JHEP review) Generated (m_{A'},y) values Dark Photon 10^{-6} $m_{A'} = 4 \text{ MeV}$ 10^{-9} $= lpha_D arepsilon^2 (m_\chi/m_{A'})^4$ $\alpha_D = 0.5$ $m_{A'} = 10 \text{ MeV}$ $m_{A'} = 3m_{\chi}$ $m_{A'} = 40 \text{ MeV}$ 10^{-10} **10**⁻¹⁰ $m_{A'} = 100 \text{ MeV}$ $\overline{\ldots}$ 1 σ , 2 σ uncertainties 10^{-11} **10**⁻¹¹ 10^{-12} Reachable y 10^{-13} Excluded **10**⁻¹² Thermal targets **Dark Photon** — 8 GeV, 0.5 ± 0.0 bkg, 10^{16} EoT 10^{-14} $\alpha_D = 0.5, m_{A'} = 3m_{\chi}$ 8 GeV, 5.0 ± 0.5 bkg, 10^{16} EoT --- 8 GeV, 5.0 ± 5.0 bkg, 10^{16} EoT 10⁻¹³ 10^{-15} - 4 GeV, 0.5 ± 0.0 bkg, 4×10^{14} EoT 10⁻² 10⁻³ 10⁻¹ 8 GeV, 0.5 ± 0.0 bkg, 4×10^{14} EoT 10^{-16} m_{A'} [MeV] 10^{2} 10^{0} 10^1 10^{3} 21 m_{χ} [MeV] arXiv:2203.08192.pdf JHEP04(2020)003
- Recoil electron transverse momentum key final measurement

Physics Potential and guaranteed deliverables

- LDMX has a **broad discovery potential** in both invisibile and visible signatures of light dark matter production at an electron-beam facility
- However, the physics potential is enriched by fundamental **guaranteed deliverables**:
 - Measurement of electron-nucleon (eN) scattering in the forward region

Physics Potential and guaranteed deliverables

- LDMX has a **broad discovery potential** in both invisibile and visible signatures of light dark matter production at an electron-beam facility
- However, the physics potential is enriched by fundamental **guaranteed deliverables**:
 - Measurement of electron-nucleon (eN) scattering in the forward region

- eN scattering as a probe for vN scattering
- Strong force nuclear effects are the main source of uncertainty → identical between the two scattering processes

Electronuclear Simulated Event Display

PH₩∑N

· · · · · · · · · · · · ·

Summary

- Thermal Dark Matter is a simple and compelling scenario, and the MeV-GeV scale is a good place to explore logical extension of WIMP
- LDMX provides a world-leading sensitivity to sub-GeV DM and can test many predictive LDM scenarios
- LDMX has impressive physics discovery potential and guaranteed deliverables
- The experiment requires a specific tracker design and precise track reconstruction for its physics case
- Current studies show the tracker performance passes the key requirements and a track reconstruction framework is in place

Phase II Prospects

Phase II Prospects

28

Physics Potential - Electron Nucleon Measurements

• LDMX can access

- Important phase space relevant for DUNE
- Can extend to recoil electron acceptance up to
 - Polar angle $\theta = 40^{\circ}$
 - p_T > 200 MeV

MIP Tracking in ECAL

MIP Tracking rejects surviving PN events keeping >80% efficiency on signal

Tracking - Impact parameters at the target

Trigger - LDM

The Hadronic Calorimeter

- Scintillator based sampling calorimeter, technology from Mu2e Cosmic Ray Veto
- Alternating x/y orientation
 - High efficiency in detecting neutrons in the 0.1-10 GeV range
 - MIP Sensitivity
- Side HCAL design optimized for high-multiplicity final state and wide angle bremsstrahlung
- Readout adapted from ECAL HGROC

Neutron energy = 2.0 GeV

The HPS SVT System - APV25 Readout

- Developed for CMS
- Radiation Hard:
 - Fast front-end shaping time 35ns
 - Readout sampling time 25ns
 - Low noise S/N > 25
- Timing information
 - Pile-up rejection
 - High-precision hit reconstruction
 - Essential for HPS and other
 experiments with Continuous
 Wave beam and high-pileup

Dark Matter at accelerators: advantages

Dark Matter at Accelerators: scenarios

The Beamline: Linac to End Station A (LESA) at SLAC

- LCLS-II 4-GeV beam at SLAC:
 - Accelerates 186 MHz bunches
 - ~5k hours /year operation for photon science at ~930kHz:
 99% of bunches to dump
- Sector 30 Transfer Line (S30XL) drives ~60% of unused low-charge bunches to LESA with LDMX as primary user
 - LESA beamline installation and commissioning is planned for FY24-25
 - Early commissioning of LDMX with low-current CW in FY25
 - LCLS-II upgrade to 8 GeV in ~FY27-28

The Hadronic Calorimeter

- Scintillator based sampling calorimeter, technology from Mu2e Cosmic Ray Veto
- Alternating x/y orientation
 - High efficiency in detecting neutrons in the 0.1-10 GeV range
 - MIP Sensitivity
- Side HCAL design optimized for high-multiplicity final state and wide angle bremsstrahlung
- Readout adapted from ECAL HGROC

The LDMX Testbeam at CERN - Prototypes

- Prototypes of all HCAL components constructed and integrated successfully into testbeam (CERN April '22)
 - Comparison to Geant4 simulated response
 - Development of reconstruction algorithms

The LDMX Testbeam at CERN - Event Display

- Muon Candidate
 - Crisp signature in HCal

- Pion Candidate
 - MIP-like deposits followed by cloud of hits

The LDMX Testbeam at CERN - Additions and Motivations

- Successful test-beam to demonstrate Trigger Scintillator and HCAL response
 - TS response well modelled by Geant4 MC simulation
 - Excellent HCAL MIP identification capability

Data Acquisition (DAQ) Design and computing facilities

Rare Background rejection

Rare Background rejection

- Single scintillator bar with < 5 photoelectrons hits
- Targets neutral particles and soft products escaping ECAL

Rare Background rejection

- **HCAL** hit Veto •
 - Single scintillator bar with < 5 photoelectrons hits 0
 - Targets neutral particles and soft products escaping ECAL Ο
- **MIP Tracking in ECAL** •
 - Veto on reconstructed single isolated track around χ Ο direction

340

260

240

-10× (mm)

-20

-30

Physics Potential - Electron Nucleon Measurements

PhysRevD.101.053004

Physics Potential - Electron Nucleon Measurements

• LDMX has unique capability to inform neutrino interaction models in the regions most relevant to DUNE

Determination of LDM signal mass scale

Future Runs - Phase II

- Strategies to increase Phase-I reach
 - Change target density / thickness
 - Increase beam energy

 Future runs at higher energy will explore the phase space up to m₀ < 300 MeV

Dark Matter at Accelerators

Experimental Approaches

Beam Dumps: Produce and re-scatter DM

- new sensitivity with $\sim 10^{21}$ particles
- covers thermal targets with ~10²⁸ particles

Requirements:

- most powerful and energetic beam available
- most massive detector available
- (key background: neutrinos)

Missing Momentum: Detect DM production

- new sensitivity for ~10¹² electrons
- covers thermal targets for $\sim 10^{16}$ electrons

Requirements:

- high rate beam at $\sim 1e^{-1}$ /bunch (1 year = 3×10^{16} ns)
- fast, sensitive, detector systems

(key backgrounds: $e^- \rightarrow e^- + \gamma$, $\gamma N \rightarrow$ hadrons)

8

Both approaches work, but only missing momentum feasibly covers all thermal targets

Possible Dark photon signatures

Dark Photon kinematics at a Fixed Target Experiment

Thermal Dark Matter Mass Range

