

Vertex reconstruction and tracking performance of the STS detector with the mCBM setup at SIS18

Dario A. Ramirez Zaldivar

Goethe University Frankfurt - GSI (CBM collaboration)

GSI - Facility for Antiproton and Ion Research (FAIR) - location

Facility for Antiproton and Ion Research (FAIR) - Construction site

Facility for Antiproton and Ion Research - Compressed Baryonic Matter

CBN

- Fix target experiment
- Heavy ion collisions
- 700 particles/events Au+Au 12 AGeV/c
- High interaction rates: 10 MHz
- 2.5[°] 25[°] polar angle coverage
- Free-streaming data (software trigger)
- Online track reconstruction

Silicon Tracking System:

- 8 Stations - 900 modules - 1.8M channels

CBM - Small scale prototypes : mini-CBM (mCBM)

mCBM@SIS18 goals:

- ... test and optimize the operation of the full system (...) under realistic ٠ experiment conditions.
- ... the free-streaming data acquisition system ... ٠
- ... the online track and event reconstruction ... ۲
- ... the offline data analysis and the detector control system ... ٠

- First beam-time 2019 - Full setup during 2021-2022 data taking campaign

mTRD 1D

2D

mMUCH GEM

mMUCH RPC

mTOF

mRIC

Η

mini-STS(mSTS) Setup

M. Teklishyn et al. TWEPP2023 https://indico.cern.ch/event/1255624/contributions/5444008/

... time calibration ...

mSTS Time calibration - Time Resolution

CBM

... we got time, what about space ...

STS Space Resolution

... track-lets, beam spot ...

mSTS Vertex Reconstruction : beam spot at target plane

mSTS Vertex Reconstruction : secondary targets

mSTS Secondary targets - Cave "tomography"

mSTS Secondary targets - Cave "tomography"

CBM

... hit reconstruction efficiency ...

GlobalTrack: Sts(1) - TRD(3) - TOF(>2)

GlobalTrack: Sts(1) - TRD(3) - TOF(>2)

Is there a reconstructed hit, attachable to the track at the unused layer?

mCBM2021 Track-lets: Sts(1) - TOF(1)

mCBM2022 Global Tracks: Sts(1) - Trd(3)

Is there a reconstructed hit, attachable to the track at the unused layer?

$$|(ec{r}_{trk}-ec{r}_{StsHit_i}-ec{r}_{res})||\leq 3\sigma_{res}$$

mCBM2021 Track-lets: Sts(1) - TOF(1) mCBM2022 Global Tracks: Sts(1) - Trd(3)

Good agreement with Monte Carlo expectations First tests of 4D tracking capabilities with data

Summary

Deep dive

M.Teklishyn From 3D to 5D tracking: SMX ASIC-based Double-Sided Micro-Strip detectors for comprehensive space, time, and energy measurements TWEPP 2023 https://indico.cern.ch/event/1255624/contributions/5444008/attachments/2728888/4743371/smx_5d_tracking_teklishyn_06OCT2023.pdf

A. Rodriguez Rodriguez et al., Functional characterization of modules for the Silicon Tracking System of the CBM experiment accepted by NIM

K. Agarwal, Thermal Management of the CBM-FAIR's Silicon Tracking System (STS) – Concept and Demonstrators Forum on Tracking Detector Mechanics 2023

https://indico.cern.ch/event/1228295/contributions/5390887/attachments/2656554/4600811/20230531_Agarwal_FTDMT%C3%BCbingen.pdf

S. Mehta, Impact of air cooling on mechanical stability of silicon sensors in CBM-STS Forum on Tracking Detector Mechanics 2023 https://indico.cern.ch/event/1228295/contributions/5390888/attachments/2656536/4600775/Vib_Tracking_forum_Mehta_1.pdf

I. Elizarov, Sustainable cooling supply for the STS detector electronics Forum on Tracking Detector Mechanics 2023 https://indico.cern.ch/event/1228295/contributions/5401384/attachments/2656351/4600422/Elizarov-Pilot%20Cooling%20Supply%20for%20the%20CBM%20Silicon%20Tracking%20System%20Detector%20Electronics.pdf

L.M. Collazo, Temperature calibration and thermal stress tests of the Front-End Electronics of the CBM Silicon Tracking System Forum on Tracking Detector Mechanics 2023

https://indico.cern.ch/event/1228295/contributions/5394879/attachments/2656948/4601561/FTDM2023_Poster_Lady_Maryann.pdf

M. Teklishyn Detectors and Electronics for the CBM experiment at FAIR ICPADGP 2023 https://events.vecc.gov.in/event/19/contributions/1009/attachments/198/411/teklishyn_cbm_detectorselectronics_07feb2023.pdf

... additional material ...

mCBM Benchmark Lambda reconstruction

Rare signal reconstructed: $\Lambda \rightarrow p \pi^{-}$

Ni+Ni 1.93 AGeV run 2391 (May '22): 10⁹ collisions, 1:57h 400 kHz av. coll. rate

all detector systems involved secondary vertex velocity windows for p and πcandidate

mSTS Signal Analysis - Charge vs Channel

2 non functional ASICs

few dead channels

module 1

mSTS Signal Analysis - Charge vs Channel

1 non functional FEB 8 non functional ASICs Calibration issues

STS Noise

... from hardware to software ...

STS sensors strips

STS sensors fired strips

STS sensors strips

1 channel per strip 128 channels per ASIC 8 ASIC per side

n-side fired strips

p-side fired strips

StsCluster

StsHit

- X, Y cluster position
- Z sensor position
- Time
- Charge

... time distributions ...

STS Time Calibration (Time Walk correction)

STS Time Calibration (Time Walk correction)

Correction is ASIC dependent

mSTS Time Resolution

Consistent time calibration across ASICs, Modules & Stations

Removal of combinatorial

... cluster distributions...

mSTS Signal Analysis - Cluster charge distribution

Charge distribution is consistent along different cluster size

... preliminary alignment ...

mSTS Vertex Reconstruction - Setup: Top view

mSTS Vertex Reconstruction - Setup: Top view

06/10/2023

mSTS Vertex Reconstruction - Splitting contributions

mSTS Self alignment

Run minimization: Vertex Spread

$$S = \sqrt{rac{\sum_{ij}{(v_{ij} - ar{v})^2}}{N_{pairs}}}$$

v_{ij} : vertex position for sensor_i, sensor_j

(currently, only translations easily extended)

mSTS Vertex Reconstruction - Splitting contributions

06/10/2023

Aligned vertex

Sensor alignment parameters

Different sensor pairs reconstruct beam spot at the same position

$$S = \sqrt{rac{\sum_{ij}{(v_{ij}-ar{v})^2}}{N_{pairs}}} = 300 \ \mu m: 8 \ iterations$$

Consistent vertex shape for different sensor pairs!

Sensor in the same mechanical structure move on the same direction

Rotations still need to be considered

Sensor alignment translations are consistent with the mechanical assembly!

... zoom in the beam spot ...

mSTS Vertex Reconstruction - Zooming the vertex

Extrapolating to large distance, detector structure shows up

mSTS Vertex Reconstruction - Vertex structures

mSTS Vertex Reconstruction - Vertex structures

... Monte Carlo studies ...

06/10/2023

06/10/2023

mSTS Acceptance - MC - Hit Reconstruction Efficiency

mSTS Rates

Expected rates STS - Worst Scenario - Monte Carlo

Au+Au - 12AGeV/c - 10MHz Au-beam target interaction at 10⁹ ions/s -> delta e UrQMD Au+Au at 10⁷ collisions/s

Delta e - low pT - B-field (1T): bent out or absorbed The two first STS stations suffer the most

> Digitization: ENC = 1000 e, Threshold: 4000 e

Max rate per channel: 150⁻10³ digis /ch / s few exceptions: 250 - 300⁻10³ digis /ch / s

PARTICLE DENSITY

Observed rates mSTS

- Beam Intensity scan: U+Au
- micro-spill structures up to 1:10

STS can sustain rates up to: 27x10³ digi/channel/sec

Run Number	Beam intensity (ions/spill)	Rate (digi/ch/s)
2256	5 · 10 ⁷	25 · 10 ³
2257	1 · 10 ⁸	27 · 10 ³
2258	5 · 10 ⁸	28 · 10 ³
2259	1 · 10 ⁹	28 · 10 ³

Observed rates mSTS

- Beam Intensity scan: U+Aumicro-spill structures up to 1:10
- STS can sustain rates up to: 28x10³ digi/channel/sec

In mCBM saturation is reached ~ 5[.]10⁸ ions/spill

Run Number	Beam intensity (ions/spill)	Rate (digi/ch/s)
2256	5 · 10 ⁷	25 · 10 ³
2257	1 · 10 ⁸	27 · 10 ³
2258	5 · 10 ⁸	28 · 10 ³
2259	1 · 10 ⁹	28 · 10 ³

Saturated mSTS

Observed rates mSTS

Scaling bandwidth (to be tested!!!) x5 FEB8_1 \rightarrow FEB8_5: 140[.]10³ digi/ch/s

mSTS hardware update is coming to proof the linear scaling!

New module!!! FEB8_5

