Recent results and technical R&D developments

VERTEX 2023 - 32nd International Workshop on Vertex Detectors 19-Oct-23

Andrea Lampis on behalf of the LHCb Collaboration

Upgrade II VELO

Framework TDR for the LHCb Upgrade II

Sensors

Framework TDR for the LHCb Upgrade II

Requirement	scenario S_A	scenario S_B
Pixel pitch [µm]	≤ 55	≤ 42
Lifetime fluence $[1 \times 10^{16} 1 \text{ MeV } n_{eq}/\text{cm}^2]$	> 6	> 1
TID lifetime [MGy]	> 28	> 5
Sensor Timestamp per hit [ps]	≤ 35	≤ 35
ASIC Timestamp per hit [ps]	≤ 35	≤ 35
Hit Efficiency [%]	≥ 99	≥ 99
Power per pixel [µW]	≤ 23	≤ 14
Pixel rate hottest pixel [kHz]	> 350	> 40
Max discharge time [ns]	< 29	< 250
Bandwidth per ASIC of $2 \text{ cm}^2 \text{ [Gb/s]}$	> 250	> 94

4 strong requirements to be accomplished at the same time

Several silicon sensors technologies under study to be used for the Upgrade II VELO

LGADs

Thin planar sensors

Higher capacitance with respect to other sensors O(100 fF)

New technology production yield still low, more runs needed to optimise production process

3D sensors

- 3D sensors optimized for best time resolution -> 3D trench
- Timing performances around 10 ps
- Radiation hardness proved up to 2.5 10^{16} 1 MeV N_{eq} cm^{-2} higher dose will be delivered
 - Fill factor around 80%, but if tilted recovers full efficiency

A. Lampis

ints/[2 ps]

400

350

300

250

200

150 F

100F

Thin planar sensors

LGADs

- Do not survive after $2.5 \cdot 10^{15}$ 1 MeV n_{eq} cm⁻²
 - Strong dependance of gain variation to irradiation fluences
 - Low fill factor with reduced pitch LGADs

R&Ds to reduce pitch and increase radiation hardness

Trench isolated LGADs

Exploits physical trenches in the silicon substrate to provide electrical isolation among nearby pixels

Radiation hardness

 Ongoing studies to mitigate gain decreases with irradiation: several material implantation in gain layer (B, C, Li, In) to mitigate the effect

Radiation hardness must be increased by factor >2 to be considered for S_B

Silicon Electron Multiplier (SiEM)

New concept: gain in silicon without doping

The Silicon Electron Multiplier sensor, NIMA 2022

From simulations:

- Minimum pitch $10 \ \mu m$
- Time resolution from 10 to 45 ps
- Radiation hardness up to $1 \cdot 10^{16}$ 1 MeV $n_{eq} cm^{-2}$

ASIC

Most challenging requirements toward a full 4D tracker

Summary

Timing performances and radiation hardness with O(50 μ m) pitch, limited power budget and high data rate

Mandatory to change the technology to overcome radiation hardness requirements: CMOS 28 nm

Two R&Ds focused on these technological

<u>aspects</u>

scenario S_A Requirement scenario S_B Pixel pitch [µm] $<\!\!55$ ≤ 42 256×256 Matrix size 335×335 ≤ 30 Time resolution RMS [ps] Mandatory ≤ 30 Loss of hits [%] < 1 ≤ 1 > 324TID lifetime [MGy] >ToT resolution/range [bits] 8 Max latency, BXID range [bits] Power budget $[W/cm^2]$ 1.51.5Power per pixel $[\mu W]$ 2314Threshold level [e⁻] < 500< 500Pixel rate hottest pixel [kHz] > 350> 40Max discharge time [ns] < 29< 250Bandwidth per ASIC of 2 cm^2 [Gb/s] > 250> 94

LHCb U2- From VELO support document for FTDR

Timespot1 ASIC & Hybrid

First development of an ASIC targetting LHCb VELO Upgrade II requirements

- 28 nm CMOS technology
- 32X32 channels, with a pitch of 55 μm
- Dimension: $66 mm^2$

Charge injection tests showed **48 ps time resolution** high dispersion between pixels, (issue in the dynamic channel equalization method)

A. Lai (INFN) @ Pixel 2022

INFN initiative involving 14 INFN institutes, 70 people (physicist and engineers), P.I. Adriano Lai (INFN Cagliari).

64x64 channels with a reduced pitch, (36 μm)

to be compatible with 45 μm or 55 μm pitch

New project to develop a 4D tracking system by exploiting technologies oriented to the micro-integration at high-density in CMOS 28 nm to solve next experimental challenges of inner trackers in HEP (UII VELO first possible application)

Single tile of 8x8 pixels

 Individual 8×8 channels block is built as a repetition unit (spare area at the contour is used to place the service electronics)

by changing the top metal layer

Mini-asic to test components of Fractalic64 submitted in July (half version of the 8x8 matrix)

More information on Gian Matteo's talk

PicoPix (CERN, NIKHEF, IGFAE)

Exploration phase of the specs limitations for a large 30 ps ASIC, based on Timepix4 experience in TSMC 28 nm CMOS technology

Study on solutions to mitigate performance non-uniformity in large area ASICSs due to power drop: studies of solutions with TSVs and on pixel power compensation

V. Sriskaran (CERN) @EP R&D Seminar

More information on Francesco's talk

Data transmission

RF foil

A. Lampis

R&Ds results are fundamental also to fix the VELO Upgrade_____ II design

In Upgrade I VELO fundamental for three main tasks:

- guarantee field continuity to LHC beams
- shield the detector electronics from RF pickup of the beams
- separate the high purity primary LHC vacuum from the secondary detector vacuum

Cylindrical Al thin foil

- 20 μm Al tensioned foil shield
- Tensions tests ongoing

Composite Shield Ulta low Z material 120/60/30 um thick

19-Oct-23

RF foil in VELO Upgrade I (185 μm Al Foil) accounts for 75% of the material. Scenario B requires lower material budget

Evaluation to combine CERN primary and VELO secondary vacuum volumes

Wire mesh

Proposed layout

Feasibility studies are ongoing

Cooling

- Fundamental to operate irradiated sensors
- Power budget of at least 1.5 W/cm² (in vacuum) mainly depends on cooling system, higher cooling capacity will benefits ASIC performances
- Limited material budget

Several coolant under investigation: CO2, Krypton, Cryogenic

Two technologies under investigation

- R&Ds ongoing:
 - Microchannel laser etching, anodic or thermo-compression bonding to lower costs

3D printing (Metal and Ceramics)

- Cheaper
- Easier to integrate
- More material

Conclusion

- Several R&Ds guided by two opposite detector scenarios toward the development of a 4D VELO detector
- Several sensor technologies are under investigation to be exploit in LHCb Upgrade II (3D, thin planar, LGAD and SiEM)
- Two projects are currently developing ASICs in CMOS 28 nm targeting Upgrade II VELO, both IGNITE and PicoPix will deliver first ASICs in 2024
- R&Ds to have thinner RF foils are ongoing
- Several coolant and cooling systems are under study

The development of the first full 4D vertex detector is an ambitious project, and it is also a huge opportunity to develop innovative technologies

BACKUP

The LHCb VELO detector

VErtex LOcator (VELO) is a pixel detector for tracking particles close to the interaction region for the primary and secondary vertex reconstruction

Upgrade I VELO

- Silicon pixel sensors
- 5.1 mm distance to LHC beams
- Radiation fluences up to $8\cdot 10^{15}\,n_{eq}cm^{-2}$
- Operated in vacuum
- RF foil to isolate the detector from beam electromagnetic field
- Dedicated two-phase CO2 microchannel cooling to operate sensors at -20°C
- Movable detector to not interfere with LHC beam adjustments

Upgrade II VELO

<u>Tracking performances of the Upgrade I VELO in the high luminosity condition will significantly drop</u> due to the higher number of particle to be detected simultaneously.

Detector layout

Distance from the beam has sever impact to technical requirements

On this talk status update on R&Ds for:

Sensors ASICs RF foil Cooling

The real scenario will be defined according to R&D results

Two opposite scenarios which both guarantee same performances of Upgrade I VELO to guide R&Ds

19-Oct-23

R&D path

R&D path towards Velo U2

Several R&Ds have been launched to cover all technological requirements for a 4D tracker able to deal with VELO Upgrade II specs

- 0) Time resolution of 20 ps (50 ps) per track (hit)
- a) ASIC design allowing for high rate and high bandwidth + high speed link
- b) ASIC and sensors able to survive Upgrade 2 particle fluences
- c) Easy to make modules and mechanics allowing replacement
- d) Lower spatial resolution (charge sharing or pixel pitch), IC and sensor
- e,f) Ability to make a thin movable foil

TimeSPOT 1 ASIC

 For each channel 23 bit world TA (Time of Arrival) + Time Over Threshold (TOT) trasmitted serially (LVDS) at 160 MHz

<u>A. Lai (INFN) @ Pixel 2022</u>

48 ps time resolution but too high dispersion between pixels, issue with the dynamic channel equalization method

60 70

50

 σ_{TA} [ps]

40

80

90 100

0%

0

10

20

30