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The landscape: colliders on the research
horizon, and the radiation environments
foreseen in them.
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The landscape: radiation environments at future colliders
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anticipate integrated luminosities of
* 3 ab’! for ATLAS and CMS
* 50 fb'! for LHCb
* 5 fb! for ALICE
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...absolute fluence and dose tolerances that
were inconceivable only a few years ago are
now appearing in ATLAS and CMS vertex
detector specifications.
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At LHCb, challenges from high fluence will be LHCb Upgrade —— ¢ LHCb Upgrade Il —
exacerbated by non-niform exposure L e mes | R [
LS3
= Dose drops by a factor 6 between 5.1 and 12.5 HL-LHC - 50t N L = 12x 10—l r . 300
mm. Non-uniform exposure leads to challenges ATLAS/CMS " "
: b g Phase 2 upgrades

on the high voltage tolerance, guard-ring
design, and technology to maintain full depletion

within each sensor. LHCb Upgrade I: incremental
improvements/prototype detectors
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Fluence profile for Upgrade-1.

Fluence per fb™! @ first layer of the Mighty Tracker.
Max fluence at the center of the inner layer: %E14
neq/cm?. Multiply by safety factor 2.




In future experiments, vertexing requires simultaneous excellence in position and timing.
Radiation challenges to the vertex detectors originate mostly with particles from the primary interaction point.

Timing detectors, increasingly critical for identifying the right vertex by suppressing pile-up tracks, will be located far
from the primary vertex and thus are subject to radiation with a different origin, for example calorimeter backsplash.

CMS ETL: located +£3.0 m from
the IP, radi1 315 — 1200 mm

BTL: L(Y)SO bars + SiPM readout:
*  TK/ECAL interface ~45 mm
Inl<1.45 and p>0.7 GeV
Surface ~40 m?; 332k channels
Fluence at 4 ab': 2x10" nJem?

e ® ETL: Si with internal gain (LGAD):
: On the HGC nose ~ 45 mm
1.6<In|<2.9
e Surface ~15 m2 ~6M channels
@ d - Fluence at 4/ab™: up to 2x10'S Nggfem?

ATLAS HGTD, located +3.5 m
from the IP, radii 120 — 640 mm




For the ATLAS High Granularity
Timing Detector (HGTD),

At radius 120 mm, expect 5.6 x

105 neq cm™2 and total ionising
dose (TID) ~3.3 MGy.

Apply safety factor of 1.5 on both
estimates. Apply second factor of
1.5 to the TID due to uncertainties
in the behaviour of the electronics
after irradiation, primarily for
low-doses-rate effects.

With safety factors: 8.3 x 10!° neq
cm 2 and 7.5 MGy.

Minimum charge of 4 fC needed
for high efficiency signal. This
can be achieved up to a radiation
damage of 2.5 x 10> neq cm™
and 2.0 MGy with present design.
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(a) Nominal SilMeVy,, fluence for HL-LHC.  (b) Nominal ionising dose for HL-LHC.

Figure 2.14: Expected nominal SilMeVy,, fluence and ionising dose as functions of the radius in

the outermost sensor layer of the HGTD for 4000 fb1 i.e. before including safety factors. The
contribution from charged hadrons is included in ‘Others’. These estimations used Fluka simulations
using ATLAS Fluka geometry 3.1Q7 (from December 2019).

http://cds.cern.ch/record/2623663 /



For the CMS Barrel Timing Layer (BTL) and Endcap Timing Layer (ETL),

BTL: TID 30 kGy and 1.9 x10'* neq/cm?

ETL: TID 450 kGy and 1.6 x10'°> neq/cm? in the high-n part of the endcap
Multiply by 1.5 safety factor to get: 3 x 10!4 (barrel) and 3 x 10! (endcap) neq/cm?

ASICs must be radiation tolerant and single event upset (SEU) compliant to the same fluence.
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Figure A.3: Predicted doses in BTL (left) and ETL (right) using the updated FLUKA CMS
simulation v.3.7.18.0 (red) and the preliminary geometry model of the FLUKA simulation run

v.3.7.2.0 (blue).

http://cds.cern.ch/record/2667167 8



Farther into the future,
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Some words from the FCC-hh CDR:
( https://fcc-cdr.web.cern.ch/#FCCHH )

= In CMOS 130 and 65 nm technologies, parasitic oxides used in
the manufacturing processes are responsible for significant
degradation. The 40 and 28 nm technologies’ preliminary results
show different phenomenology and slightly more promising
radiation tolerance.

= [t is unlikely that circuits designed with these technologies could
survive the TID levels (100-5000 MGy) expected in the inner
tracker layers and the forward calorimeters of FCC detectors.

Max. Current degradation [%]

-80 'enMOS W=240nm: L=60nm
£pMOS W=240nm; L=60nm

-100 — L
PreRad 10° 10’ 10° 10°
TID [rad]
= TID has traditionally limited the radiation tolerance of CMOS ASICs, however these technologies have not been tested for
displacement damage at > 5 x 10!7 neq/cm? and this might lead to additional failure mechanisms.

= CMOS technologies have been shifted from planar to bulk FINFETS starting from a nominal gate length of about 22 nm and
have now reached the 7 nm pattern size. The literature® shows that TID tolerance has decreased with this miniaturisation due
to radiation-induced leakage currents in the neck region of these devices, a characteristic that cannot be addressed by any
design technique. This evidence shows that the construction of reliable electronics systems for FCC detectors cannot simply
rely on the improved radiation performance which accompanies miniaturisation.

10
*M.P. King et al., IEEE Trans. Nucl. Sci. 64, 285 (2017)


https://fcc-cdr.web.cern.ch/

Vertex and timing detectors at future /epton machines will confront extremes of total ionizing dose and nonzero high
energy hadron (HEH) effects.

Dose in the tunnel, 6.6 mA, 10" s
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* Single event effects (SEE) are proportional to the high energy hadron fluence (HEH, i.e. hadrons with energies >20
MeV, produced by ionisation by a single particle).

» SEE defined by their probability to occur. The effect depends on the device, the intensity and the kind of radiation
field.
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https://fcc-cdr.web.cern.ch/

For CEPC, when operating at the Z-pole energy, for the first vertex layer,

maximum annual TID estimated at 3.4 MRad

annual non-ionizing energy loss (NIEL) with safety factor 10 is ~6.2 x1012 1-MeV
Neq €M™
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Hit density, TID, and NIEL at different vertex detector layers due to pair production, off-
energy beam particles and the two combined for the machine operation at Vs = 240 GeV.

(Conceptual Design Report, https://arxiv.org/ftp/arxiv/papers/1811/1811.10545.pdf)
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https://arxiv.org/ftp/arxiv/papers/1811/1811.10545.pdf

» CLIC — From the CDR, http://project-clic-cdr.web.cern.ch/ :

= Incoherent e-e* pairs - dominant source for the total ionising dose.

= NIEL damage in the barrel - dominated by yy — hadrons.

= NIEL damage in the forward region, both yy — hadrons and incoherent e-e¢* pairs contribute.

= Quoted numbers do not include safety factors for the simulation uncertainties.

= Assuming an overall safety factor of two for the yy — hadrons background and five for the incoherent e-e¢™ pairs, predict
maximum flux in the inner vertex layers of ~4 x 1019 neq/cm?/yr and up to 200 Gy/yr.

Table 4.2: Expected radiation damage (NIEL and TID) from incoherent pairs and yy — hadrons for the
barrel pixel sensors (VXB 1-6) and for the lower end of the endcap pixel disks (VXEC 1-6) of the
CLIC_ILD detector model. The numbers are quoted without safety factors for simulation uncertainties.

Radius Pairs NIEL Hadr. NIEL Pairs TID Hadr. TID

[mm] [10° Neq/ cm?/yr] [10° Neq/ cm?/yr]  [Gylyr] [Gy/yr]
VXB 1 31.0 3.87 11.51 39.43 4.57
VXB 2 33.0 2.88 8.57 27.83 4.01
VXB 3/4 44.0 0.99 4.60 8.01 2.46
VXB 5/6 58.0 0.45 2.92 3.30 1.66
VXEC1/2 33.6 6.17 5.64 27.99 3.10
VXEC3/4 33.6 6.72 5.79 29.25 2.96

VXECS5/6  33.6 7.83 6.14 34.12 3.13

13



http://project-clic-cdr.web.cern.ch/

» Radiation simulations at the IL.C show that the worst conditions are actually at the forward calorimeters.

However limiting our focus to the vertex detectors:

* beamstrahlung-induced background at the innermost layer leads to 1 kGy and 10! neq/cm?/yr. Components are
disrupted primary beam, brem photons, e+e- pairs from beam interactions, radiative Bhabhas, and yy— hadrons.

Oor muons.

* Assumes that neutrons backscattered from a beamdump are shielded.

* From the ILC TDR:

Sub-detector  Units Layer 500 GeV 1000 GeV
VTX-DL hits/cm? /BX 1 6.320 £+ 1.763 11.774 + 0.992
2 4.009 4+ 1.176 7.479 &+ 0.747
3 0.250 + 0.109 0.431 £+ 0.128
4 0.212 £ 0.094 0.360 £ 0.108
5 0.048 £ 0.031 0.091 £ 0.044
6 0.041 £ 0.026 0.082 £ 0.042

https://linearcollider.org/technical-design-report/

14




> Muon collider

Radiation levels at 3 TeV comparable
to HL-LHC. 1-MeV-neq fluence for one year of operation (200 days)
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Expect (FLUKA simulation): i
= ~10'-10'%/cm?/year in the tracker = 8 ' 4
= ~10"/cm?/year in the ECAL . By

1e16/|:m.:"2/uear'
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Expected (FLUKA simulation) to be approximately: ~ ~10'+"%/cm?/y in the tracker
S. Jindiari, VCI 2022 ~10"/cm?ly in the ECAL
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» EIC

Near-beamline regions’
radiation has been simulated.
At the top luminosity of 103
cm2s 1,

= (Calorimeters in the
backward arm show ~2.5
kRad/year max ionizing
dose.

= Vertex tracker and the
forward-backward
calorimeters receive > 1010
neutrons/cm?year.

= Target radiation tolerance
~1015 neg/cm?.

neutron flux above 100.0 keV in [n/cm 2] for 1.0 fb ' integrated luminosity
500

10°
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10°

300
107

Radial coordinate, [cm]

200
10°

100 ot

i Wl i
-goo -400 -300 -200 -100 O 100 200 300 400 500

Z coordinate (along the beam line), [cm]

Neutron flux from the e+p collisions at
\/sep = 140 GeV studied using the
BeAST detector concept with the
assumed location in the RHIC,
located/placed in the RHIC IP6
experimental hall, which also applies to
the reference EIC detector.

= Bunch crossing rate will be < 10 ns, making fast timing detectors essential.

Radial coordinate, [cm]

Radiation dose in [Jicm °]for 1.0 fb " integrated luminosity

107
10°
107
10°
= 10°
107
10
10°
10"
10"

0 100 200 300 400 500
Z coordinate (along the beam line), [cm]

Ionizing radiation energy deposition from
e+p collisions at \/sep = 140 GeV studied

using the BeAST detector concept, which
also applies to the reference EIC detector.
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Some challenges
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The detectors (vertex, timing, 4D) in the radiation
environment of the experiment must be able to

maintain:

O
W

o
o

= charge collection despite trapping.
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Risks as the radiation environment intensifies:

= Achieving depletion raises operating voltages, increasing
risk of irreversible breakdown, “single event burnout”

\4

= For devices with internal gain (see LGADs, next slides), as
signal diminishes with fluence, must either increase the
gain (defect engineering) or decrease the noise — without

losing speed \
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The Hamburg Model* for predicting silicon response to radiation damage, has been essential for detector
studies since it was released in 1999.

= The model needs to be updated for the fluences foreseen today. This is underway now in LHC experiment
working groups using data from inner tracking detectors.

= A general model that starts from defect levels to describe macroscopic properties of silicon is needed. This
1s a goal of the DRD3 collaboration.

= Fundamental properties of the carriers — mobility, lifetime — must be quantified at the highest fluences.

* https://mmoll.web.cern.ch/thesis/
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Effects at the highest fluences
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Approaches and opportunities
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Trapping, i.e. signal loss, turns out to be the issue for the vertex detector. And acceptor removal is the
challenge for the active gain devices.

Approaches being explored:
= Reduce the distance between electrodes
= Incorporate a gain structure — low gain avalanche detectors (LGADs)

= Apply defect engineering

These are introduced 1n the slides that follow.

25




Reducing the drift distance
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In planar devices, thin substrates inhibit
trapping, maintaining charge collection
even after 1el7 neutrons

= 75 um epitaxial diode
= More charge collected under forward

bias, but S/N is better under reverse bias.

Mean charge (el)
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3D sensors — trapping is inhibited by the short
distances achievable between electrodes.
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R. Ceccarelli, PIXEL2022
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Charge collection modeled and observed in 3D
strip sensors exposed to ~10'7 n,, neutrons

Measurements of 3D - Strip sensors irradiated to
FCC-hh fluences using TCT/Alibava/CCE setups

M. Manna et al., NIMA 979 (2020) 164458.
M. Manna et al., 35t RD50 workshop,2019
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Trench geometry can smooth the electric field in 3D
devices, preserving the radiation tolerance while

improving speed of collection: the motivation for the
Timespot project.

“classic” trench 3D pixels: R. Mendicino
et al.,, NIM A 927 (2019) 24.
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“Modified” trench 3D pixels, A.
Boughedda et al., Front. Phys.,
07 July 2022
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Simulated charge collection curves for MIPs

uniformly crossing a pixel over its active area.
M. Garau, TREDI 2023 30




Incorporate internal gain: LGADs
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The traditional LGAD design includes a gain layer below the surface, with a goal to obtain gain for
electrons but not holes, with:

= gain field ~ 300 kV/cm across ~1 micron near the junction
= bulk field ~20 kV/cm, for saturated electron drift velocity ~107 cm/s.

Initial designs isolate the electrodes with p-stops combined with junction termination extensions to reduce the
electric field at the electrode edges for breakdown suppression. This succeeds but reduces the fill factor.

pixel 1 pixel 2

metal

oxide
A
p-Stop
' Gainlayer E
no gain region s
<€ sl > &
(dead area) <
p-type active layer v !
Thick low resistivity p-type substrate
G. Pellegrini et al., NIM A 765 (2014) 12. Metal (back contact) .

H.F.W. Sadrozinski et al., NIM A 730 (2013) 226.



Many solutions proposed to increase the fill factor are now being explored...

Trench-isolated (TT) LGAD replaces JTE with a
silicon oxide-filled trench of width < 1 micron
and depth ~few microns

Multiplication region ultiplication region

W Pixel 1

G. Paternoster et al., IEEE Elect. Dev. Lett. 41, no. 6, June 2020.

7'y %]%D_ﬁ
p-stop

20-50 um

Electrode

n Implant

Ohmic contact

Ground plane

Deep junction (DJ) LGAD eliminates
JTE, pairs p++ gain layer with an n++
layer to lower the field, buries the
junction (~5 micron) so that fields are
low at the surface. Sufficient gain
maintained although field outside
electrodes is low.

S. Ayyoub et al., arXiv:2101.00511
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Fill factor solutions, continued....

Charged particle N+ E|eCtrOde

High resistivity p-type substrate “\ | ‘ ‘ ‘ ‘

.
E g E\ g
.

P" electrode

Inverse LGAD (iLGAD): The p*
electrode 1s segmented on the ohmic
side, collecting holes.

E. Curras et al., NIM A 958 (202) 162545.

Thin coupling
dielegtric layer

DC Bias Pad

AC-LGAD: physical pixelation of the LGAD
disappears. The n*" implant at the junction is highly
resistive and extends in a continuous sheet over the
gain layer across the whole sensor. Add dielectric
layer and AC coupling to readout.

G. Giacomini et al., 2019 JINST 14 P09004.
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“AC-RSD”
AC pads

“DC-RSD”

resistive n+

pt+

p bulk

AN

_Oxide
Resistive n+
Gain layer

inter-pad resistor

Resistive Silicon Detectors (RSD)

e Thin LGAD with a resistive read-
out. Initial design AC-coupled.

» Signal sharing of charge induced in
the resistive layer, fast signal in the
nearby AC pads. Slow charge flows
to ground.

 spatial resolution better than 0.5 x

pitch/\12

* Now developing DC-RSD:
Remove oxide layer, add interpad-
resistors to confine the signal
regions. Avoids collection of
leakage current only at the
periphery; improves control of
signal sharing.

R. Arcidiacono, 22" RD50 Workshop
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Thinning the LGADs: the eXFlu project
Goal: extend silicon LGAD operation up to __ | wedoped -
. . % || cathode N geee———-
5E17, by exploiting observed saturation of § | g
damage effects beyond 5E15. 2 | 2 S Effective
e p-implant 2 doping
) © \ ar-———ge S n-implant
= Sensor thickness limited to 20-30 microns. _E g" -----
= Thinner sensors provide higher gain after 3 Eﬁ:ﬂ": 3
irradiation.
= New gain layer design, “compensated Distance from surface Distance from surface
LGAD” — with p and n doping combination
in the gain layer. l Irradiation
= pre-irradiation, internal signal multiplication " ‘1 o
from the gain layer E l §
= with radiation, signal multiplication 2| z T -
progresswely moves from gain layer to bulk § i iz
region %‘ ______ § doping
a Effective o 5
\ doping
Distance from surf;co Distance from surface
Standard LGAD design Compensated LGAD design

https://aidainnova.web.cern.ch/thin-silicon-sensors-extreme-fluences
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Some goals and progress beyond silicon and beyond traditional
hybrid technology — and certainly this is only a partial list

38



= New explorations of wide band gap semiconductors
are a priority. High carrier saturation velocity predicts
good operation in timing applications. Band gap
predicts operability without cooling.

geometry with graphite electrodes

= Continued efforts in diamonTO, especially in the 3D

N. Venturi et al., NIM A 924 (2019) 241. l
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In this SiC
sample, forward
bias yields almost
a factor of 10
increase of the
signal at 1el5
neq/cm?

E. Curras et al., TREDI 2023

In this SiC sample,
the fast-neutron
fluence
corresponding to the
lowest observed
pulse heightis 1.1 x
1017 n cm™.

F.H. Ruddy et al., Trans. Am.
Nucl Soc. 90 (2004) 348.
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LF-Monopix2 DMAPS

Mean efficiency / %

Radiation hardness in MAPS continues to improve
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M. Gazzi et al., TREDI 2023
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Comparable evaluation needs to be made on interconnects, mechanical supports, services.

= Much work is underway but publications are relatively few.
= (Candidate materials are regularly evaluated directly in radiation environments but less often modeled.
= Some guidance can come from modelers in the space sciences.

= Some interesting takeaway reading:
= Readout Technologies for Future Detectors, M. Begel et al., arXiv:2203.14894 [physics.ins-det]

“Modern fiber-optical transceivers are not sufficiently radiation tolerant to be placed inside the tracking detector....so
the transmitters receiving the data via long electrical cables...limit the readout bandwidth. [Development of] radiation
tolerant fiber-optical links is one way to solve the problem. The other approach is...on-detector compression,

reduction, aggregation. [The compression] electronics need comparable radiation tolerance as the fiber-optical links.
Silicon-photonic technology...found to be highly radiation tolerant.”!-2

= Radiation-tolerant, low-mass, high bandwidth, flexible printed circuit cables for particle physics experiments, N.C.
McFadden et al., NIM A 830 (2016) 461-465.

= Modeling Radiation Damage in Materials Relevant for Exploration and Settlement on the Moon, N.E. Koval et al.,
https://www.intechopen.com/chapters/81141

TA. Kraxner et al., TWEPP2018
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2T. Prousalidi et al., TWEPP 2021.


https://www.intechopen.com/chapters/81141

Conclusions

= Radiation environments are being carefully simulated for all future facilities

= Saturation and non-linear effects are becoming apparent at the highest fluences
= Trapping i.e. signal loss is the primary challenge

= Many ingenious technologies are being explored
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