

Characterization of Pixel Detectors with Test Beams for the Inner Tracker Upgrade of the ATLAS

VERTEX 2023

19th October 2023

André Rummler

On-behalf of the ITk Pixel collaboration

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.

HL-LHC and ATLAS upgrade

- HL-LHC upgrade is under construction and will provide after LS3 primarily a peak luminosity increased by more than a factor 3 to 7.5·10³⁴ cm⁻² s⁻¹
- Pile up (events per bunch crossing) will increase from maximum 50 to maximum 200
- The current ATLAS Inner Detector cannot cope with these conditions and another 20+ years of operation would exceed massively the current detector's life expectancy

FRN

ITk Overview

- The current ATLAS Inner Detector will be replaced by a new full silicon detector
- The Inner Tracker (ITk) will consist • of the pixel and the strips detector
- Pixel forward coverage increase: ٠ η<2.5 to η<4
- Resulting in total in a factor 10 ٠ larger active surface: 1.9 m^2 to 13.5 m^2

talk by Joleen Pater on Tuesday

ITk Pixel Modules

- Pixel modules are mounted on staves and rings with embedded CO₂ cooling: <-25° C on sensor (max. -45°C coolant)
- Hybrid sensor modules consisting of one sensor tile with one or four readout chips connecting each pixel cell by a bump ball
- ITKPix (RD53) as readout chip
- On the sensor tile a flex PCB is attached by glue which connects the readout chips by wire bonds
- Another flex (pig tail) attached to it realizes the connection to the exterior through the stave flex

20mm (384 columns)

ITk Pixel Structure

ATL-PHYS-PUB-2021-024

ATLAS为

Pixel module types

3D Sensors

- 3D sensors in the inner most region (L0 and corresponding rings) as:
 - Very high radiation hardness at low bias voltage
 - Higher cost due to technical complexity
 - Potentially higher capacity/noise
- 150 µm active wafer (high resistivity p⁻) bonded to a 100 µm handling wafer (thinned after production)
- Both n^+ readout columns and p^- bias columns etched from the same side
- $25 \ \mu m \ x \ 100 \ \mu m$ pixel cells in barrel for improved impact resolution

Planar Sensors

- Planar sensors in the Outer System:
 - Reduced radiation hardness requirements
 - Lower cost

- N-in-p wafers single side processed with 100 μm bulk thickness in L1 and 150 μm in the outer layers
 - Thinner bulk reduces material budget and increases charge collection
 - Thicker bulk increases the yield
- Isolation (p-spray vs p-stop) and testing (punch through, bias rail/resistor, temporary metal) according to vendor preferences
- Manufacturers chosen: FBK, MICRON and HPK

Test Beam Experimental Setup

- ACONITE telescope (hodoscope) located in the SPS H6 beam line
 - EUDET telescope with 6 Mimosa26 planes and trigger scintillators with a pointing resolution of >3 µm
 - 120 GeV pions
 - FE-I4 (MMC3) plane and ITkPixV1.1 SCC (FBK) for track matching/ referencing → checked with both
 - Reconstruction with Corryvreckan using extended

geometry class Jansen, H., Spannagel, S., Behr, J. et al. Performance of the EUDET-type beam telescopes. EPJ Techn Instrum 3, 7 (201 6). https://doi.org/10.1140/epjti/s40485-016-0033-2

D. Dannheim et al., "Corryvreckan: a modular 4D track recon struction and analysis software for test beam data", J. Instr. 16 (2021) P03008, doi:10.1088/1748-0221/16/03/P03008, ar Xiv:2011.12730D.

trigger

Test Beam Experimental Setup

- Cold box
 - 2 deep temperature chillers driving external cooling circuits with silicon oil / ethanol:
 - Liquid/air heat exchanger inside the box
 - Nitrogen (for humidity control) pre-cooling
 - Optional direct cooling circuit for quads

- Achieved <-40°C on powered quad modules which is challenging due to the nature of test beam setups (no stave; no permanent connection)
 → reserves for various future tests
- 3D modules and planar single chip modules mounted on rigid PCBs intended for tests only while the planar quad modules were on flex PCBs
- Readout with YARR/OHIO card fully integrated into EUDAQ1
- Data taken with pre-production modules on rigid and flex PCBs irradiated at KIT (23 MeV protons), CERN IRRAD (24 GeV protons), CYRIC (70 MeV protons), Bonn (13 MeV protons)

Planar sensor modules

- Data taken with FBK planar HPK planar Micron planar 100 µm
 - in September \rightarrow analysis ongoing
- Preview...

- Fulfills required hit efficiency after 1.8.10¹⁶ n_{eq} cm⁻²
 - >97% (15°) at 60V
 - >96% (perpendicular) at 80V
- Higher efficiency expected in inclined state particularly for 3D sensors
- Staged irradiation / measurement: KIT (SCC 1S, SCC 4S), IRRAD (SCC 4S)

19/10/2023

Bias voltage [V]

3D SINTEF 50 µm x 50 µm

- In-pixel efficiency 100% for unirradiated modules with exception of bias p⁺ columns at 55-85%
- After irradiation readout electrode area in the middle if the pixel cell: 90%
- Only relevant for perpendicular incident angle which are not the foreseen operation conditions 50 µm

19/10/2023

FBK sensors (2023) 025

"Qualification of the first pre-production 3D | with ITkPixV1 readout chip".PoS Pixel2022

3D FBK 50 µm x 50 µm

- 3D FBK 50 µm x 50 µm measured at target fluences in 2022 and 2023
- Irradiated at IRRAD

- 3D FBK 50x50 µm² efficiency
- Irradiation to $10^{16} n_{eq} \text{ cm}^{-2}$ in
- 50x50 µm² requires slightly lower bias voltage than 25 µm x 100

19/10/2023

TERN

Summary

- The ITk Pixel detector is currently in the pre-production phase moving towards production
- The following sensor flavors were measured in form of single or quad chip modules equipped with ITkPixV1.1 readout chip:
 - SINTEF 3D 50 μm x 50 μm \checkmark
 - FBK 3D 50 μm x 50 μm √
 - FBK 3D 25 μ m x 100 μ m \checkmark
 - FBK and MICRON Planar 50 μm x 50 μm, 100 μm bulk
 - HPK Planar 50 μm x 50 μm, 150 μm bulk
- Charge collection efficiency vs bias has been demonstrated to be fully compliant for the 3D sensors
- Outlook:
 - Finish analysis of planar data
 - Complete outstanding measurements (MICRON 150 µm, additional voltage points at proper fluence areas)
 - ITkPixV2 equipped modules to arrive next year which will have e.g. ToT operational
 - Further specialized measurements such as magnetic field under discussion for digitizer and radiation damage studies

Backup

