

Track finder for the Phase-2 Upgrade of the CMS Level-1 Trigger

Christopher Brown

on behalf of the CMS Collaboration

19th October 2023

Introduction

- HL-LHC
- CMS Phase-2 Upgrade
 - Trigger & Tracker
- Track Finding for the Level-1 Trigger
- Hybrid algorithm
 - Tracklet Pattern Recognition
 - Kalman Filter
 - Performance
 - Track Quality
- Firmware Implementation
- Hardware and Integration Testing

HL-LHC

- 3000-4000 fb⁻¹ over the HL-LHC lifetime
- Good for rare BSM physics searches and SM precision measurements

~ 10 cm

- Simultaneous proton-proton interactions per bunch crossing (pileup) rising to 200 at 40 MHz
- Current era CMS cannot cope without loss in physics performance
- Radiation damage too high for current CMS
 tracker and endcaps
- CMS needs to be upgraded and the Level-1 trigger is a major part of these upgrades

CMS Phase-2 Upgrade

- HGCal -> particle flow focused calorimeter
- Upgraded tracker, higher η coverage and Level-1 track finding
- Upgraded muon chambers, increased redundancy

Level-1 Trigger

- ~110 kHz \rightarrow 750 kHz rate
- ~4 μ s \rightarrow 12.5 μ s latency
- Big FPGAs \rightarrow flexibility
- Upgraded HGCal and Calorimeter backend electronics, high granularity at L1
- Tracks from outer tracker at L1, full 40
 MHz readout
- Can perform PF and vertex finding for particle per pileup identification

Tracker Upgrade

5

Tracker Upgrade

p_T modules

- 2 closely spaced layers of silicon
- Tuneable window give on module p_T cut
- Both types of outer tracker module contain p_T modules
- Can't have stereo strips → but need precise z₀ coordinates so use pixelstrip modules
- Reduces data rate enough for track finding at 40 MHz
- 1 mm z₀ resolution allows a vertex to be found in 200 pileup

Tracks for Level-1 \rightarrow System Overview

Read out tracker in **nonants Hourglass shape** avoids inter-nonant communication

Track Finder Processor

- 18 boards per nonant
- New event every 450 ns
- 4 µs to process tracks

Data Trigger and Control

- 24 boards per nonant
- Stub pre-processing, distribute stubs to track finder
- Forwards rest of data on L1 accept

DTC

Hybrid Algorithm

Reconstruct all tracks $p_T > 2 \text{ GeV}$, $|\eta| < 2.4$ 4 µs to process over 10,000 stubs and form \mathcal{O} (100) prompt tracks per event

Hybrid algorithm

- 1. Road search algorithm based on tracklet seeds
- 2. Kalman filter for identify best stub candidates and track parameters
- 3. Boosted decision tree to evaluate track quality

Hybrid Algorithm - Tracklet

Step 4

 Pass track candidates downstream to track merger and Kalman Filter

Step 3

- Add matching stubs to track candidate
- Smallest residual stub is kept
- Minimum 4 stubs, maximum 6 stubs for a track

Step 1

- Use two stub seeds to create initial tracklets
- 8 different combinations of barrel and endcap layers

Step 2

- Project track candidates outwards/inwards
- Based on a beamspot constraint
- Create a search window for more stubs

Hybrid Algorithm - Tracklet

- Use virtual modules binning stubs in fine φ regions so that only stub combinations p_T > 2 GeV are considered
 - Minimises combinatorics
 - Simplifies firmware
- Seeds are considered multiple times in parallel for efficiency
- Tracks with shared stubs are merged to reduce duplicates

Hybrid Algorithm – Kalman Filter

- Takes track candidates and track residuals to form
 Kalman filter state and covariance matrix respectively
- Stubs are iteratively added a layer at a time in a state propagation and state update
- State propagation estimates the track in the next layer
- State update uses the recorded stubs and their uncertainties to improve the track state, removing any tracks with incompatible stubs
- Track fit iteratively improves as stubs are added

Hybrid Algorithm - Performance

High efficiency across n

Transition regions see fewer layers crossed so slight dip in efficiency at $\eta = 1$

1 mm z_0 resolution for tracks \rightarrow good enough for vertex association in 200 PU Worse resolution in η because of barrel geometry

Hybrid Algorithm – Track Quality

- High fake rate → tracks not coming from genuine charged particles
- Issue for algorithms such as E_T^{miss} where single high p_T tracks can reduce efficiency
- Kalman Filter calculated χ^2 fit parameters
- Can use these to reduce fake tracks → handle for downstream algorithms

Hybrid Algorithm – Track Quality

- Complex dependence of χ^2 in different η and z_0 regions
- Single cut on χ^2 cannot account for these interdependencies
- Simple **boosted decision tree** (60 trees, 3 deep) can improve identification
- Can be retrained and tuned as track finding evolves
- Single value for downstream users

Firmware Implementation

- Pattern recognition firmware implemented in Vivado HLS
- Processing modules and memory modules interspersed
- Multiple copies in parallel
- Wiring map to control wiring between processing and memories
- Kalman filter in VHDL
- Track quality BDT implemented in VHDL
- Targetting 240 MHz clock
- All modules completed

Firmware Implementation

- Pattern recognition firmware implemented in Vivado HLS
- Processing modules and memory modules interspersed
- Multiple copies in parallel
- Wiring map to control wiring between processing and memories
- Kalman filter in VHDL
- Track quality BDT implemented in VHDL
- Targetting 240 MHz clock
- All modules completed

Firmware Implementation

- Use **combined modules** to reduce latency
- Reduce latency by 3 x 450 ns
- Reduce number of processing → memory steps
- Rewriting modules in HLS with some combined modules successfully implemented in a reduced chain

Firmware Implementation – Slice test

- Reduced configuration chain successfully implemented
- Narrow ϕ slice, single seed
- Implemented on a VU7P with KF and track quality added
- > 99% firmware-emulation agreement

Framework used for control, I/O, clock distribution and data buffering for the algorithm payload, used across the Phase-2 L1 Trigger

Tracklet
Kalman Filter
Kalman Filter Output
Track Quality BDT
EMP Framework

Firmware Implementation - Full Barrel

- Full barrel project
- Single VU13P
- 2/3 of entire project → just the pattern recognition stage
- Meeting timing is difficult with this complexity of project
 - advanced floorplanning
 - combined modules
 - rewriting parts in VHDL
- Lots of progress has been made to meeting timing
- Final project will be split between two VU13P FPGAs, making timing closure easier

Hardware Testing

Using the Apollo board

- Rev-1 hosting a single VU7P (previous testing)
- Rev-2 hosting two VU13P FPGAs (current testing & final design in red in the picture)

Variety of optics under test, ultimately need 25 Gb/s (in pink in the picture)

- Tests involving wider trigger system
- Have successfully transferred tracks from the reduced configuration track finder processor to vertex finding system
- Tests underway using the Apollo Rev-2 board with more complete versions of the track finding firmware

Apollo Rev-2 DTH* Ethernet Switch Serenity

*For distributing a common clock between boards

Example use of tracks in the L1 trigger

Vertex Finding

- Histogrammed approach to finding the highest p_T scatter in an event
- Developing a neural network-based approach taking advantage of track quality BDT to improve resolution

Particle Flow and Pileup per Particle Identification

- Major part of the CMS L1 trigger
- Reduce impact of far higher PU on trigger algorithms
- Main user of tracks and vertex downstream
- Higher efficiency across many key physics channels

<u>Neural Network-Based Primary Vertex Reconstruction with FPGAs for the Upgrade of the CMS Level-1</u> <u>Trigger System</u> <u>Particle Flow Reconstruction for the CMS Phase-II Level-1 Trigger</u>

c.brown19@imperial.ac.uk

Conclusion

- Track finding is essential for the CMS Level-1 trigger upgrade
 - Particle flow, vertex finding, pileup per particle identification all now possible in Level-1
- Track finding must reconstruct *O* (100) tracks, p_T > 2 GeV, |η| < 2.4 from 10,000 stubs all within 4 μs at 40 MHz
- Reduced configuration firmware testing successful, now expanding to (i) full barrel and (ii) full tracker projects
- Integration testing with the wider trigger system underway

Backup

Tracker Upgrade

PS Modules

- One Pixel, one strip layer
- 1.47 mm long, 100 µm wide pixels give z₀ resolution for a track of 1 mm
- 100 µm pitch strip sensor
- Angled barrel region increases efficiency

Tracker Upgrade

2S Modules

- Two strip sensor layers
- 90 µm pitch
- High resolution in φ, poor resolution in z (η) in the barrel (endcap)
- Lower occupancy and bandwidth motivates their use in the outer layers

Hybrid Algorithm – z₀ resolution

uncertainty

Hardware Testing - Boards

Apollo Rev-2, target board for the track finder FW, two VU13P FPGAs. Also used in inner tracker DTC and Lumi measuring Serenity Board used for wider L1 trigger and used for integration testing with the track finder. Will be used for DTC