

# Recent results on micro-electronics developments for future trackers in Hi-Lumi upgrades



Gian Matteo Cossu gianmatteo.cossu@ca.infn.it

on behalf of the IGNITE collaboration

Future colliders (LHCb Upgrade II, HIKE (NA62 upgrade), CMS-PPS, ATLAS AFP, FCC-hh) will have to cope with extremely high instantaneous luminosity:

- REQUIREMENTS FOR SENSORS:
  - $\circ$  Radiation hardness against fluences from  $10^{16}$  to  $10^{17}~1 MeV \frac{n_{eq}}{cm^2}$
  - $\circ\,$  Spatial resolution  $\sigma_s\approx 10\,\mu m$
  - $\circ\,$  Time resolution  $\sigma_t \leq 50\,ps$  per hit
  - $\circ\,$  Detection efficiency  $\epsilon > 99\%$  per layer
- REQUIREMENTS FOR READ-OUT ELECTRONICS:
  - $\circ$  Pixel pitch  $\approx 50\,\mu m$
  - $\circ \text{ Time resolution } \sigma_t \leq 50 \, ps \text{ on the full chain} \rightarrow \sigma_t^2 \sim \sigma_{sensor}^2 + \sigma_{AFE}^2 + \sigma_{TDC}^2$
  - $\circ~{\rm Radiation~hardness}~TID>1~Grad$
  - $\circ$  Power budget per pixel  $P\approx 25\,\mu W$  (referred to  $55\,\mu m$  pitch,  $1.5\,W/cm^2)$
  - $\circ$  DATA BANDWIDTH  $\approx 100~Gbps/ASIC$

Future colliders (LHCb Upgrade II, HIKE (NA62 upgrade), CMS-PPS, ATLAS AFP, FCC-hh) will have to cope with extremely high instantaneous luminosity:

- REQUIREMENTS FOR SENSORS:
  - Radiation hardness against fluences from  $10^{16}$  to  $10^{17} \, 1 MeV \frac{n_{eq}}{cm^2}$
  - $\circ\,$  Spatial resolution  $\sigma_s\approx 10\,\mu m$
  - $\circ\,$  Time resolution  $\sigma_t \leq 50\,ps$  per hit
  - $\circ\,$  Detection efficiency  $\epsilon > 99\%$  per layer



- REQUIREMENTS FOR READ-OUT ELECTRONICS:
  - $\circ$  Pixel pitch  $\approx 50\,\mu m$
  - Time resolution  $\sigma_t \leq 50 \ ps$  on the full chain →  $\sigma_t^2 \sim \sigma_{sensor}^2 + \sigma_{AFE}^2 + \sigma_{TDC}^2$
  - $\circ\,$  Radiation hardness  $TID>1\,Grad$
  - $\circ$  Power budget per pixel  $P\approx 25\,\mu W$  (referred to  $55\,\mu m$  pitch,  $1.5\,W/cm^2)$
  - $\circ$  DATA BANDWIDTH  $\approx 100~Gbps/ASIC$

Future colliders (LHCb Upgrade II, HIKE (NA62 upgrade), CMS-PPS, ATLAS AFP, FCC-hh) will have to cope with extremely high instantaneous luminosity:

- REQUIREMENTS FOR SENSORS:
  - Radiation hardness against fluences from  $10^{16}$  to  $10^{17} \, 1 MeV \frac{n_{eq}}{cm^2}$
  - $\circ\,$  Spatial resolution  $\sigma_s\approx 10\,\mu m$
  - $\circ\,$  Time resolution  $\sigma_t \leq 50\,ps$  per hit
  - $\circ\,$  Detection efficiency  $\epsilon > 99\%$  per layer



- REQUIREMENTS FOR READ-OUT ELECTRONICS:
  - $\circ$  Pixel pitch  $\approx 50\,\mu m$
  - $\circ \text{ Time resolution } \sigma_t \leq 50 \ ps \text{ on the full chain} \rightarrow \sigma_t^2 \sim \sigma_{sensor}^2 + \sigma_{AFE}^2 + \sigma_{TDC}^2$
  - $\circ\,$  Radiation hardness  $TID>1\,Grad$
  - $\circ$  Power budget per pixel  $P\approx 25\,\mu W$  (referred to  $55\,\mu m$  pitch,  $1.5\,W/cm^2)$
  - $\circ$  DATA BANDWIDTH  $\approx 100~Gbps/ASIC$

CMOS 28-nm

**ELECTRONICS** 

Future colliders (LHCb Upgrade II, HIKE (NA62 upgrade), CMS-PPS, ATLAS AFP, FCC-hh) will have to cope with extremely high instantaneous luminosity:

- REQUIREMENTS FOR SENSORS:
  - Radiation hardness against fluences from  $10^{16}$  to  $10^{17} \, 1 MeV \frac{n_{eq}}{cm^2}$
  - $\circ\,$  Spatial resolution  $\sigma_s\approx 10\,\mu m$
  - $\circ\,$  Time resolution  $\sigma_t \leq 50\,ps$  per hit
  - $\circ\,$  Detection efficiency  $\epsilon > 99\%$  per layer



- REQUIREMENTS FOR READ-OUT ELECTRONICS:
  - $\circ$  Pixel pitch  $\approx 50\,\mu m$
  - $\circ \text{ Time resolution } \sigma_t \leq 50 \, ps \text{ on the full chain} \rightarrow \sigma_t^2 \sim \sigma_{sensor}^2 + \sigma_{AFE}^2 + \sigma_{TDC}^2$
  - $\circ\,$  Radiation hardness  $TID>1\,Grad$
  - $\circ$  Power budget per pixel  $P\approx 25\,\mu W$  (referred to  $55\,\mu m$  pitch,  $1.5\,W/cm^2)$
  - $\circ$  DATA BANDWIDTH  $\approx 100~Gbps/ASIC$





Recent results IGNITE – GM Cossu – Vertex 2023 – Sestri Levante 16-20 Oct 2023

**INFN** R&D on Silicon Photonics and High-speed Interconnect



P. I. Fabrizio Palla

#### FAST LINK AND RAD-HARD FRONT-END WITH INTEGRATED PHOTONICS AND ELECTRONICS FOR PHYSICS

Compact Silicon Photonic Mach-Zehnder Modulators for High-Energy Physics <u>See Simone Cammarata's talk given at</u> TWEEP 2023

25 Gb/s NRZ transmission validated using standard Folded Mach Zehnder Modulator (FMZM)and RAD HARD FMZM up to 1.25 Grad!

#### Also developing:

28-nm CMOS Serializer (target data rate 25 Gbps) 28-nm CMOS Driver/Receiver (target data rate 25 Gbps)



# The INFN - IGNITE initiative



National initiative fundend by  $\mathbf{INFN}$ 

- 14 INFN institutes
- 70 people involved (physicist and engineers)
- P.I. Adriano Lai (INFN Cagliari)

#### GOAL: DEVELOP A TRACKING SYSTEM SUITABLE FOR HIGH LUMINOSITY CONDITIONS

- 1) Integrated system composed by a hybrid 28nm CMOS ASIC and pixel Sensor MATRIX
- 2) Readout ASIC for HIGH-BANDWIDTH optical data transmission
- 3) Take advantage of the experience obtained from the previous R&D projects (Timespot, Falaphel etc..)

considering all the challenges in realizing such a device

- Obtain uniform timing performance over a large area
- Minimize power consumption
- Distribute data to the read out
- Etc.
- 4) Explore innovative 3D technologies and vertical connections (TSVs, Face2Face or Face2Back bonding)

### The IGNITE ASIC concept



- Each pixel has 36um pitch and AFE + TDC
- Make space for the TSV
- Plls for clock distribution in the digital space between tiles

#### Example of 32x32 ASIC for 45 um pitch Sensor



#### Example of 32x32 ASIC for 55 um pitch Sensor

Same repetition unit with different redistribution layer

Higher pitch (110um, 165um etc.) can be obtained by channel masking

16-20 Oct 2023

## **RESULTS: IGNITE ASIC PIXEL**

#### TIMESPOT1 PIXEL



- The pixel Fundament cells (AFE and TDC) have been completely redesigned using the new 28nm technology (HPC → HPC+)
- The experience gained with the TIMESPOT1 ASIC was fundamental to speedup the process
- Several improvements in area, power consumption and performance

<sup>\*</sup> PRE-SHRINK SIZES

## RESULTS: PIXEL AFE



#### TIMESPOT1 AFE

• CSA inverted based with double Krummenacher feedback + dual Stage Discriminator



- Discrete time DC Offset compensation (global threshold and baseline)
- Issue with the Offset compensation but average performance around 60ps for 2fC charge injection with 100fF Sensor Capacitance

#### **IGNITE Analog Front-Ends**

- Several topologies investigated (CSA, Common Gate TIA, Cascode TIA..etc)
- 4 different flavors simulated and with finalized design (Layout + Post Layout Simulations)
  - 1. Cascoded Inverter with Fine DAC threshold tuning (**FT-CAS** )
  - 2. Cascoded Inverter with enhanced Offset Compensation (**OC-CAS**)
  - 3. No-Cascode Inverter with Fine DAC threshold tuning  $(\mathbf{FT-noCAS})$
  - 4. No-Cascode Inverter with enhanced Offset Compensation (**OC-noCAS**)

#### Specifics:

- LAYOUT AREA = 40um x 15um
- Local Charge injection circuit
- Programmable Power :  $4uW \rightarrow 21 uW$
- Programmable TOT: e.g.,  $10ns \rightarrow 160ns$

## RESULTS: PIXEL AFE (post layout simulations)



Jitter Vs Charge evaluated with:

 $\begin{array}{l} {\rm Cd}=\!\!100 {\rm fF} \\ {\rm Power}=10.8~{\rm uW} \\ {\rm Discharge}~{\rm Current}=100 {\rm nA} \\ {\rm Vth}\sim 30 {\rm mV} \end{array}$ 



Jitter Vs Power evaluated with:

Cd =100fF Discharge Current = 100nA Vth  $\sim$  30mV Qin = 1fC



Jitter Vs Capacitance evaluated with:

Qin= 1fC Power= 10.8uW Discharge Current = 100nA Vth  $\sim 30$ mV

## **RESULTS: PIXEL TDC**



#### TIMESPOT1 TDC

- VERNIER ARCHITECTURE ٠
- 2 DCO with frequency  $\sim 1 \text{GHz}$ ٠
- DCO switched off after measure ٠
- Time resolution the depends on the ٠ difference in period of the 2 DCO
- TA (~ 20ps), TOT (~ 1ns) •
- TIMESPOT1 RTL DESIGN

#### IGNITE TDC

- SAME VERNIER ARCHITECTURE DESIGNED COMPLETELY FULL CUSTOM (Area 27um x 10um)
- DCO WITH 16 DELAY UNITS
  - Period range: 780ps  $\rightarrow$  900ps •
  - Period tuning: Coarse ( $\sim 50 \text{ps}$ ), Fine (3ps) ٠
  - DCO jitter  $\sim 1 \text{ps}$ ٠
- MEASURE OF TA with resolution  $\sim 12 \text{ps rms}$  (POST) LAYOUT SIMULATION)





16-20 Oct 2023

Power Cons.

IDLE

DAO1MHz 69.3

μW

20.7

552

175

45.5

25.7

TDC power

Calibration

DAQ 3 MHz

DAQ 500 kHz

DAQ 100 kHz

### RESULTS: IGNITE PLL



- PLL (Phased Locked Loop) designed in order to provide an internal reference clock with a static phase with respect to an external clock
- Based on a starved DCO with 3 different starving schemes (static, DAC and external)
- Core Area: 30um x 6um
- Area with Filter : 433um x 15.6 um
- Lock frequency : 40 MHz
- POST SIMULATION: power consumption 50uW, jitter filtering from 14ps (input) to 1.9ps (output)

| 10000 |  |
|-------|--|
|       |  |

## **RESULTS: IGNITE0 TEST CHIP**



#### IGNITE0 mini@SIC

- Submitted in July '23
- Expected in November '23

#### Contains:

- Half Tile 8x4 (Half repetition unit)
- 32 AFE channels (All different flavours)
- 32 TDCs
- PLLs for clock generation/filtering (40MHz and 640MHz)
- DACs
- Readout Managers
- I2C interfaces for controls and configuration

### **RESULTS: IGNITE0 TEST CHIP**



#### IGNITE0 mini@SIC

Some of the test we will be able to do:

- Each pixel AFE can be pulsed individually using the Charge injection cell (measure jitter vs Charge), (measure jitter vs power)
- Each AFE is connected to a "Sensor Cell" that allow to change the capacitance load (from 12.5fF to 187fF) at the input of the amplifier (measure jitter vs capacitance)
- TDCs can be pulsed through the AFE but also from outside using a FAST-IN LVDS input (TDC performance scanning the phase with high accuracy)
- Evaluate PLLs performance using loopback connection

## **IGNITE** Conclusions and Perspectives:

- The IGNITE initiative is currently working for develop a tracking system for High luminosity environments
- We have submitted a first prototype (IGNITE0) that contains half of the repetition unit that we want to use as a building block for a larger chip
- We are currently working on the test PCB that will allow us to test IGNITE0
- Next step development of ASIC "Fractal\_IC\_64"
  - 64x64 pixels matrix
  - Periphery for test with conventional wire bonding integration





THANK YOU

### IGNITE: 3D/Vertical integration techniques



- 3D INTEGRATION: vertical interconnection of different active layers (different ASICs for example) using TSV (Through Silicon Vias)
- Possibility of eliminate the inactive areas due to wire-bondings and enable "abutting"
- Each layer can be assigned to a particular function, e.g. (Front-end, Clock distribution, data merging)

### IGNITE AFE schematic:



General architecture of the Analog Front-End

- Single Krummenacher Feedback
- AC coupling
- Dual Stage Discriminator

Two Core Amplifier solution:

- Cascoded Inverter
- No-Cascode inverter



Two channel equalization solution: Offset Compensation, Finetune DAC





16-20 Oct 2023

Recent results IGNITE - GM Cossu - Vertex 2023 - Sestri Levante

## **RESULTS: IGNITE0 TEST CHIP**



#### IGNITE0 mini@SIC

#### READOUT SYSTEM:

- One 16-word depth FIFO for each 8x2 block
- Each event is a 49-bit word that includes all the info (Vernier counters, TOT, Coarse Timestamp/Bxid, Event type, pixel Address, FIFO Status)
- Data not optimized for bandwidth (testing purposes)
- Data out on two differential lines @ 640 Mb/s
- Max event rate per output line/FIFO  $= > \sim 12.5$  MHz
- Max event rate per pixel  $\sim 780~{\rm KHz}$

### IGNITE radiation hardness of 28nm HPC+:



#### IGNITE RAD-CHIP

- Submitted in April, samples arriving
- PCB for testing under preparation
- Irradiation test scheduled in Padua