

Status of the Picopix chip

Francesco E. Brambilla 19th October 2023

francesco.enrico.brambilla@cern.ch

Index

- 1. Velopix2 and Picopix
- 2. Analog FE
- 3. Time Measurements
- 4. On-Pixel Clustering
- 5. Read-out Architecture
- 6. High-Speed Links

Velopix2 Roadmap

Velopix (2016)

Technolo	Technology TSMC 130nm – 8 metal			
Pixel Size	2	55 x 55 μm		
Pixel arra	Pixel arrangement 256 x 256 (2x4 superpix			
Sensitive	area	1.98 cm ²		
g)	Mode	Binary (hitmap) + TOA		
ita ven kin	Event Packet	30-bit		
driv rac	Max rate	5x10 ⁶ hits/mm ² /s		
Ĕ	Max Pix rate	~50 KHz/pixel		
TOT ener	gy resolution	< 1Kev		
Time res	olution	25ns		
Readout	bandwidth	4x @5.12 Gbps		
Minimum threshold		<500 e⁻		

Timepix4 (2019)

Тес	hnology		65nm – 10 metal	
Pix	el Size		55 x 55 μm	
Pixel arrangement		opt	4-side buttable	
		ent	512 x 448	
Ser	sitive area		6.94 cm ²	
6	Data	Mode	TOT and TOA	
de	Dala	Event Packet	64-bit	
ŝ	(Tracking)	Max rate	3.58x10 ⁶ hits/mm ² /s	
Ę	(Tracking)	Max Pix rate	10.8 KHz/pixel	
ρ	Frame	Mode	CRW: PC (8 or 16-bit)	
Sea	based	Frame	Not-zero-suppressed	
	(Imaging)	Max count rate	~5 x 10 ⁹ hits/mm²/s	
TO	Г energy res	olution	< 1Kev	
Tim	ne resolutior	า	195ps bin → ~60ps _{rms}	
Rea	adout bandv	vidth	16x @10.24 Gbps	
Minimum threshold		shold	<500 e ⁻	

Timepix4v0 with 4x300 μm (256x256) edgeless Si sensor (August 2020)

francesco.enrico.brambilla@cern.ch

VERTEX 2023 - Picopix Status

Towards HL-LHC in LHCb

https://indico.cern.ch/event/1140707/contributions/5067786/attachments/2536255/4365084/Gkougkousis_VERTEX22.pdf

francesco.enrico.brambilla@cern.ch

VERTEX 2023 - Picopix Status

Initial LHCb requirements for Velopix2

	Requirement	scenario ${\cal S}_A$	scenario ${\cal S}_B$
	Pixel pitch [µm]	\leq 55	≤ 42
	Matrix size	256×256	335×335
Priority	Time resolution RMS [ps]	≤ 30	≤ 30
	Loss of hits [%]	≤ 1	≤ 1
	TID lifetime [MGy]	> 24	> 3
	ToT resolution/range [bits]	6	8
	Max latency, BXID range [bits]	9	9
	Power budget $[W/cm^2]$	1.5	1.5
	Power per pixel $[\mu W]$	23	14
	Threshold level [e ⁻]	≤ 500	≤ 500
	Pixel rate hottest pixel [kHz]	> 350	> 40
	Max discharge time [ns]	< 29	< 250
	Bandwidth per ASIC of $2 \text{ cm}^2 \text{ [Gb/s]}$	> 250	> 94

Challenging!

doable

Velopix2 demo chip \rightarrow PicoPix

- TSMC HPC+ 28nm \rightarrow Provides great level of integration at the Pixel level
 - Large choice of standard cell libraries included characterized at 0.8V, 0.9V and 1V
 - Radiation tolerance is better than in 65nm and 130nm
 - Make use of different Macro blocks being developed in the section (Serializer, DACs, ADC, IO Pads, DC-DC,...)
 - TSMC 28nm is a 90% linear shrinkage process from 32nm technology
- Designed as a "real" small scale prototype of the large Velopix2 to <u>avoid to</u> <u>get false expectations on final design:</u>
 - Analog FE
 - TDC (local DCO)
 - Pixel data clustering
 - Pixel readout
 - SEE robust architecture (TMR)
 - Clock distribution using dDLL approach (as in Timepix4)
 - High-speed links (DART28)
 - On-chip Bandgap and biasing DACs
 - UVM Functional verification

Pixel Size					
Drawn	Si				
50	45				
51	45.9				
52	46.8				
53	47.7				
54	48.6				
55	49.5				
56	50.4				
57	51.3				
58	52.2				
59	53.1				
60	54				
61.111	55				

- Price for 100 chips and all options
- Design time comparable to a full-scale design if targeting a "real" Velopix2 prototype
 - Might be spaced limited in the periphery...
- Bump-bonding with diced ASICs

Time resolution in tracking detectors: VELO2 case

- Target resolution of <20ps_{rms} track time is required to distinguish PV
- Single plane resolution of <50ps_{rms} $\rightarrow \sigma^2_{sensor}$ (40ps_{rms}) + σ^2_{ASIC}
- σ^2_{ASIC} (30ps_{rms}) $\rightarrow \sigma^2_{analogFE}$ + $\sigma^2_{conversion}$ + σ^2_{clock}

•
$$\sigma^2_{\text{conversion}} \rightarrow \frac{TDC_{bin}}{\sqrt{12}} \rightarrow TDC_{bin} = 40 \text{ps} \rightarrow 11.5 \text{ ps}_{rms}$$

• $\sigma^2_{\text{clock}} \rightarrow \text{Reference clock at pixel level} < 10 \text{ ps}_{rms}$
• $\sigma^2_{\text{analogFE}} \rightarrow <25 \text{ps}_{rms}$

Analog FE

francesco.enrico.brambilla@cern.ch

Limits to time resolution in analog FE

- C_{DET} , C_{FB} , and C_{OUT} are the front-end input, feedback, and output capacitances, respectively.
- g_m is the input transconductance
- V_{THR} is the threshold of the comparator
- \rightarrow Minimize the front-end output capacitance.
- \rightarrow Maximize the input charge and decrease the threshold.

→ The front-end input capacitance must be minimized, which depends on the choice of the sensor, pixel pitch... **R.Ballabriga**, The Timepix4 analog front-end design: Lessons learnt on fundamental

R.Ballabriga, The Timepix4 analog front-end design: Lessons learnt on fundamental limits to noise and time resolution in highly segmented hybrid pixel detectors https://doi.org/10.1016/j.nima.2022.167489

On-time measurements <30ps_{rms}

- 1) TOA Blocks
- 2) TOA & TOT Measurement

TOA Acquisition

- Digital Front-End jitter $\rightarrow \sigma_{digitalFE} < 17 ps_{rms}$:
 - $\sigma_{\text{conversion}} \rightarrow \frac{TDC_{bin}}{\sqrt{12}} = \frac{11.5 \text{ ps}_{\text{rms}}}{\text{with TDC}_{\text{bin}}} = 40 \text{ ps} \rightarrow 11.5 \text{ ps}_{\text{rms}}$
 - $\sigma_{clock} < 10 \text{ ps}_{rms} \rightarrow$ from dPLL clock @320MHz

francesco.enrico.brambilla@cern.ch

Time and Energy Measurement

- Time of arrival (TOA):
 - Coarse TOA \rightarrow sample a BxID transmitted across the matrix (40MHz)
 - Fine TOA \rightarrow measure Hit from first rising edge @320MHz to next rising edge @40MHz
 - Ultra-Fine TOA \rightarrow measure from TDC with 40ps bins
- Time over threshold (TOT):
 - Measure the discriminator ON duration (320MHz) \rightarrow Equivalent energy measurement

On-Pixel Clustering

- 1) Master Pixels
- 2) Large Cluster Removal

Cluster analysis

• PP simulation data analysis over 560 ASICs shows clusters sizes:

Cluster Size	1	2	3	4	Other	
Num Clusters	4666212	4510943	1286141	548639	480585	1149252
	40.6%	39.3%	11.2%	4.8%	4.2%	100.0%

- >99.5% of small clusters (3x3 pixel hits) have θ < 0.5mrad:
 - Readout only small clusters
- Some clusters have large numbers of pixel hits (>300):
 - 19.7% of pixels hit are from large clusters
 - Big spread depending on ASIC position
 - Early detection and filtering have a big impact in power, bandwidth...

On pixel event processing \rightarrow Data reduction

- Most events are clusters of 1-4 pixels
 - Readout only the largest event in a cluster → Best time (TOA) and energy (TOT) resolution
- Cluster events in X and Y in a single data output packets:
 - 1 data packet per cluster
 - Master (M) pixel found using arbitration circuitry as in Medipix4
 - TOA and TOT only on Master (M) pixel
 - Hitmap of pixels around Master (M)
- Advanced on-pixel data filtering possible:
 - Accept events only in certain TOT range
 - Accept events only in certain TOA range
 - Accept events only for certain hitmap range

Fundamental to filter undesired data at pixel level !!!

On-pixel VETO Large Clusters

- Based in TOT using arbitration + hitmap + veto logic:
 - Works asynchronously and across the whole matrix \rightarrow No clock (low power)
 - Can be disabled

	NWN	NN	NEN		
NWW	NW	N	NE	NEE	
ww	w	Μ	E	EE	
sww	sw	S	SE	SEE	
	SW	SS	SES		

VetoN = (NW or N or NE) and (NWN or NN or NEN)
VetoE = (NE or E or SE) and (NEE or EE or SEE)
VetoS = (SW or S or SE) and (SW or SS or SES)
VetoW = (NW or W or SW) and (NWW or WW or SWW)

VETO_Large_hit = VetoN or VetoE or VetoS or VetoW

Pixel to output data readout

- 1) Superpixels
- 2) Regions
- 3) High-level Modeling
- 4) Reduction in the periphery

- Triggerless, data-driven read-out
- Pixel \rightarrow Superpixel \rightarrow Region \rightarrow End-of-Column

Pixel Matrix organization: PicoPix SuperPixel

- 1 Analog island:
 - 4 FE + 4 Disc
 - Threshold (5-bit) and TOT (3-bit) calibration
- 1 TDC:
 - Discriminator outputs are OR-ed → Only 1 TDC measurement per SuperPixel
 - In Timepix4 each pixel has an independent measurement → "Simpler" block for PicoPix
- Arbitration:
 - Finds the pixel with larger charge ightarrow Winner
 - From Medipix4
 - Works across SuperPixels in all directions
- Hitmap:
 - Finds pixel with a HIT around the Winner
 - Works across SuperPixels in all directions
- Packet Formatter:
 - Might add local filtering: TOT, size of hitmap,...
- FIFO:
 - Stores data temporarily

Region

PixeMatrix organization: Region and Full Columns

- Contains 2xN SuperPixels:
 - N is a parameter in the RTL code
 - N=4 \rightarrow 32 pixels
 - N=8 \rightarrow 64 pixels
- 1 dDLL station node
- Should be the macro block for array formation
- M Regions form a full pixel column:
 - M is a parameter in the RTL code
 - M=16, N=4 \rightarrow 512 pixels

PixelMatrix & Periphery

	Velopix1	Velopix2
Pixel	256x256	256x256
SP	128x128	128x128
Regions	64x8	128x8
EoC	64 (8 ch.)	128 (16 ch.)

- High-level prototype (SystemC) for Velopix2
- Models data flow in pixel matrix and periphery, shows congestion and bottlenecks

Off-Chip Datalinks

D. Ceresa, <u>SystemC framework for architecture modelling</u> of electronic systems in future particle detectors

francesco.enrico.brambilla@cern.ch

VERTEX 2023 - Picopix Status

High Speed Links

francesco.enrico.brambilla@cern.ch

DART28 Testing Status

- DART28 has arrived, testing started
- All blocks operational, no functional issues:
- Data generation, PLL, serializer, output driver
- PLL: Excellent jitter performance demonstrated
- 40MHz 12.8 GHz: <300 fs rms
- Data transmission successfully demonstrated
- Performance degraded at 25.6 Gbps (data-dependent jitter):
- Source: Supply bondwire inductance
- Mitigation strategies being studied
- Sufficient performance at lower data rates (12.8 Gbps, 6.4 Gbps)

25.6 Gbps Line Driver (PRBS7)

25.6 Gbps Line Driver (Short Sequence)

12.8 Gbps Line Driver (PRBS7)

Summary and Project Status

- PicoPix is intended to be a "realistic" demonstrator chip for a possible future upgrade of the LHCb Velo project (LS4)
 - Main requirement is to target a time resolution < 30ps_{rms}
 - Other very challenging requirements (pixel size, radiation hardness, power, bandwidth,...)
- Status → "exploration phase" of the specs limitations for a large 30ps_{rms} target ASIC:
 - Front-end limits and optimization
 - On-pixel TDC
 - dDLL reference clock distribution
 - On-pixel clock-cleaning PLL (Nikhef) + local LDO
 - 1st full column RTL exists
 - Readout architecture studies for Velopix2 ightarrow adapt to Picopix
- Project organization:
 - Bi-weekly design meetings have been organized
 - Design team: CERN, Nikhef and IGFAE

BACKUP

Project manpower

• Manpower:

- CERN:
 - V. Sriskaran: Analog FE + analog periphery (100%)
 - S. Esposito: Functional verification and architecture debugging (50%)
 - A. Caratelli: digital designer (70%)
 - G. Bergamin: digital designer (30%)
 - X. Llopart: Project management & digital designer (50%)
- NIKHEF:
 - V.Gromov: On-pixel PLL
 - C.Akgun: Sigma-delta DAC
- IGFAE:
 - A. Fernandez: DAQ studies
- More CERN manpower expected to join the team in 2024
 - Delayed due to CHIPS support to other projects
- Indirect manpower:
 - Many IP blocks in TSMC 28nm being designed in the CERN R&D (Serializer, SLVS drivers/receivers, PADs...)
 - CERN EP R&D WP5: Intelligence on detector
- Current submission plans Q2-Q4/2024

TOA Building blocks

- dPLL (Nikhef) submitted in an MPW in September
 - Core is 25x40um
 - Generates 320MHz clock used for TDC while "cleans" jitter from column clock
- dDLL blocks are derived from Timepix4
 - Macro custom blocks are completed
- TDC is currently being implemented with a digital on top methodology
 - 2 DCO (5 phase and 7 phase) macros designed with 40ps LSB target

Free running On-pixel DCO

- Explored the idea of the on-pixel freerunning DCO with event-by-event calibration:
 - With 3 bits oscillation control
 - Using 7T cells with extracted parasitic
- Advantages:
 - No control voltage distributed along the column
 - Systematic effects can be suppressed
 - Faster oscillation times and lower dynamic power → better time resolution
- Disadvantages:
 - Requires DCO calibration measurement
 → data bandwitdth!

	freq	Phases	Phase mismatch [max-min]	LSB	Area	power
Timepix4 VCO	640 MHz	8	~25%	195ps	~350µm²	~500µW
PicoPix DCO	2-3 GHz	10	< 5%	50-33ps	~38µm²	~150µW

TDC Operation

- TOA \rightarrow BxID (9-bit)
- At Periphery extract fine time (10-bit) based on:
 - FTOA_MEAS + FTOA_MEAS_320 + UFTOA_MEAS_STOP (11-bits)
 - FTOA_CAL + UFTOA_STOP_CAL (10-bits)

Data Reduction

Sort&Bin module:

- ASIC module, placed between the EoC and off-chip data links of Velopix2
- Accumulates hit packets over time and groups them in bins based on event tag (BX)

Goals:

- Data reduction (~20 %)
- Fixed latency
- Power savings

High Speed Links in 28nm

- WP6 ASIC Roadmap
- Planned submission in Q1/2023
- Demonstrate:
 - Electrical: correct operation of high-speed transmitter
 - **Optical**: SiPh integration, end-to-end optical link
 - Dual Channel WDM*:2 NRZ links on one fiber

*Wavelength Division Multiplexing

francesco.enrico.brambilla@cern.ch

VERTEX 2023 - Picopix Status

Types of pixel packets

					512 pixels,	/DC
Event packet:	23	17 16		9 8 7	6 5 4	3 0
1 packet/event	TOA		Hitmap	Pixel	Col SP	SPG
Address+hitmap+TOA+TOT	[8:0] 47 47	43 42	[7:0] 37 36	[1:0] 32 31	[0] [1:0]	[3:0] 26 25 24
•	ТОТ	FTOA_FALL	UFTOA_S	TOP	FTOA_RISE	TOA
	[4:0]	[5:0]	[4:0]		[5:0]	[8:0]
	23			7	6 5 4	3 0
DCO Calibration packet:		FTOA CAL		· · · ·	Col SP	SPG
Cumulative calibration data		[19:0]			[0] [1:0]	[3:0]
\rightarrow improved DCO measured	46		37 36			27 26 24
frequency		Event Counter		UFTOA_CAL		FTOA_CAL
 To be sent every N events or by DAQ request 		[9:0]		[9:0]		[19:0]
	23	17 16		7	6 5 4	3 0
Event counter packet:	23 Event_counter	17 16 erP1	Event_counterP0	7	6 5 4 Col SP	3 0 SPG
Event counter packet: • Used for threshold equalization,	23 Event_counte [9:0] 46	17 16 erP1	Event_counterP0 [9:0] 37 36	7	6 5 4 Col SP [0] [1:0]	3 0 SPG [3:0] 27 26 24
 Event counter packet: Used for threshold equalization, counting 	23 Event_counte [9:0] 46	17 16 erP1 Event counterP3	Event_counterP0 [9:0] 37 36	7 Event counter	6 5 4 Col SP [0] [1:0]	3 0 SPG [3:0] 27 26 24 Event counterP1

francesco.enrico.brambilla@cern.ch