28nm technology and ASIC design in HEP experiments

VERTEX 2023 October 16-20, 2023 Sestri Levante

Kostas Kloukinas CERN

- Why the 28nm node
- Technology Performance
- Common Design Platform
- Design Ecosystem

Survey of CMOS technologies

Selection Criteria

- Radiation Tolerance
- Accessibility
- Technical support
- Availability of IP blocks
- Long-term availability
- Cost

Design Platform

Mixed-Signal Design Kit, Reference Workflows, Rad-Tol techniques

IP blocks

Rad-Tol IO pads, ESD structures, SRAMs Rad-Tol Volt. Ref, ADC, DAC, PLL, DLL

SOC Platform System-On-Chip design Enablers

Collaborative Framework

NDAs, Commercial contract, Support, Maintenance, Training

2020

Technology

Selection

The "position" of the 28nm node

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2003 2004 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

PERFORMANCE COMPARED TO 65 NM:

x 4-5 GATE DENSITY INCREASE

> x2 FASTER

x50 LEAKAGE INCREASE – CAN BE REDUCED EXPLOITING MULTI-VT and MULTI-GL DESIGNS

28nm: Optimal Balance of Cost and Power for 2015 Devices

- 28nm offers the most transistors per \$
- The last¹ planar bulk CMOS node

¹almost; 22nm, 20nm "shrink" nodes

Source: Europractice presentation at MUG session TWEPP2023

28 HPC+ technology options

- Multiple metal schemes and technology options available
- Narrow down options in the common design platform to facilitate
 - IP block exchange
 - Work on common projects
 - Organize MPWs for sharing prototyping costs

28nm Common Design Platform

PDK: mmWave HPC+ Vt options: lvt, svt, hvt, uhvt, ehvt/SRAM_LL Metal scheme: IP9M_5XIZIU + UTRDL

Europractice support

CERN ASIC support Team

Alessandro Caratelli Marco Andorno Kostas Kloukinas

28nm CMOS HPC+ Logic, RF

TSMC 28NM CMOS RF HIGH PERFORMANCE COMPACT MOBILE COMPUTING PLUS 0.9/1.8V

	Technology cha	racteristics	Shrink technology: YES						
tate			Core voltage: 0.9V						
			I/O voltage: 1.8V						
			Shallow Trench Isolation (STI)	and the state of t					
			Wells: Retrograde twin well for low well she	et resistance and better latch-up					
			penavior. Triple well, Deep N. Well in ention						
ning o	octo		Thple well, Deep N-well In option						
ping c	0515		Vt antions: ult lut out but ubut abut						
			JV HVMOS HighDos resistors						
			Temperature range: -//0C to 125C						
			# of metals: 5 to 10 Cu + ALPDI						
			Interconnect dielectric: ELK						
			Top metal: 1.9KA, 8.5KA, 11.5KA, 35KA						
			CMP on STI. contact, via and passivation						
			MoM capacitor						
			Passivation: dual layers						
	Options that ne	ed special	SRAM Cell						
	attention		Vt's: maximum of 4 VT types in one design.						
Motals	Schamas								
Tietais	JUICIIICS			·					
28 HPC		8M	1	lp8m_5xlzlu_ut-alrdl					
28 HPC+ (use	MMWAVE PDK)	7M	lp7m_4x1y1z_alrdl	1					
		8M	lp8m_5x2r_alrdl	lp8m_5xlzlu_ut-alrdl					
			lp8m_5x2r_ut-alrdl						
		9M	1	lp9m_5xly1z1u_ut-alrdl					
			https://europractice-ic.	com/mpw-prototyping/asics/tsmc/					
				, , , ,, ,, ,, ,, ,, ,,					

- Digital std. cells
 - Foundry libraries
 - 120 different sets
 - Optimized implementation for Performance and Power
 - Front-end & Back-end views (layouts & netlists) are made available

CERN study

- Select the best sets and/or exclude cells to optimize Radiation Tolerance, Performance and Power
- Integrate libraries in the Common Design Platform

								tcbn2	28hpcbw	p35p(40
30 nm Faster										
35 nm	Gate leng	sth HPC+ 12T Raw Gate Speed Active Speed Density Kgates/mm2 GHz Power nW/MHz				Static Power nW/MHz	atic ower WMHz			
40 nm			3	Onm	2,971	1	1		1	Polv
Less Power			3	5nm	2,971	0.9	0.	.992	0.446	1017
			4	Onm	2,971	0.806	1.	.003	0.232	
7, 9, 12	Tracks	HPC+ 30P	Raw (Densi Kgates	Gate ity s/mm2	Speed GHz	Active Power nW/MHz	St Pc nV	atic ower V/MHz		140nm
HPC+ only		7T	4,289		0.742	0.601	0.4	85		
in e ^a only		9T	3,961		0.886	0.781	0.7	'14		
		12T	2,971		1	1	1			
SVT, LVT, HVT,		- work	ماط	HPC+ 12T 30P	Raw Gate Density Kgates/mm	Sp Gł 12	eed Iz	Active Power nW/MH	Static Power z nW/MHz	
	voltage ti	iresn	UIU	LVT	2,971	1.3	51	1.235	5.305	
UIIII, ULIIII				SVT	2,971	1		1	1	

Poly pitch

HVT EHVT 2,971

2,971

0.654

0.229

0.911

0.903

0.127

0.019

- 28nm Common Design Platform:
 - Support collaborative work of distributed design teams
 - Minimize efforts to integrate a "design environment"
 - Avoid incompatibilities
- Incorporates:
 - Mixed-Signal Design kit
 - Scripted Design Flows that are standardized and validated using <u>selected EDA software tools</u>
 - Maintenance
 - Technical Support
 - Training
- Developed by
 - CERN ASIC Support Team in collaboration with Cadence VCAD Design Services
 - https://asicsupport.web.cern.ch

Europractice versions

TID CHIP LAYOUT

í g					88	
						C
- H		6.6 6.8			in a	e 🖬 e
			a a a a a		BH HA	5 -1
. H- L.						- -
				- -		
C H C					ə - I 3	C. 8-9
з <mark>н</mark> 3					- H -	
C I I I			N B • F A			
r d r			183 - 141		, , , , ,	C B-
3 1 3				x ~ c	3 7 3	
C 14 (• • •		
- 4 -			8-3, 2-9	1. Pr 1.		r: ••1
į	e an e			4 8 C	3 4 3	

SINGLE TRANSISTORS ARRAY 7x probing arrays Different transistor flavors Variability arrays Design submitted in June 2021

EXP28 CHIP SUITE

Total ionizing dose (tid) studies:

- Ring Oscillator for standard cells
- Built-In-Self-Test for SRAM memories

SINGLE EVENT EFFECT (SEE) STUDIES:

- Vernier Delay line for SET studies
- Flip-Flop matrixes for SEU studies
- Functional SRAM test for SEE on memories

P BLOCKS CHARACHTERIZATION

- Bandgap and Temperature sensor
- Digital-to- Analog Converted (DAC)
- Probe array for HV devices and resistors

slide by Giulio Borghello

Single transistors

Power consumption vs TID for different std. cell libraries in Ring Oscillators

Figure 3. Current consumption during irradiation and HTA for ROs (a) and single nMOS (b).

https://iopscience.iop.org/article/10.1088/1748-0221/18/02/C02003/pdf

library standard cells

Presented by G. Bergamin at TWEPP 2022: <u>https://indico.cern.ch/event/</u> <u>1127562/contributions/4904</u> 915/

<u>Testing procedure</u>: BIST logic kept fixed at 0.9V, frequency and voltage scan for SRAMs.

Heavy Ion test run in UCL Louvain

slide by Giulio Borghello

Kostas.Kloukinas@cern.ch

Important parameter for implementing Temporal Redundancy fault tolerant schemes

slide by Giulio Borghello

Latch-up immunity tests

Latch-up sensitivity depends on doping levels(which cannot be changed) and distance between wells

ion	angle [°]	LET [MeV/(mg/cm²)]	fluence [10 ⁶ ni/cm²]	voltage
Ni	0	20.4	23.3	VDD (0.9 V)
Ni	45	28.85	16.2	VDD
Kr	45	45.82	11.4	VDD
Xe	0	62.5	51.6	VDD
Rh	45	65.2	11.4	VDD
Xe	45	88.39	6.2	VDD
Хе	45	88.39	45.0	1.15*VDD
Xe	75	241.48	1.72	15*VDD

high LET, high voltage

No SEL

in any of the structures for any for the tests!!!

Giulio Borghello

RADIATION TOLERANT ESD PROTECTIONS

- outsourced to SOFICS by the CERN ASIC Support
- Design completed. Submitted in Jan 2022 for radiation characterization.
- https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx

RADIATION TOLERANT CMOS IO PAD

- Let outsourced to SOFICS by the CERN ASIC Support
- in progress. Radiation characterization will follow.
- https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx

SRAM MEMORIES

- Compilers purchased from the Foundry by the CERN ASIC Support
- We can distribute precompiled memory upon request
- Submitted in Jan 2022. Radiation characterization completed.
- https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx

EFUSES

- Let P block purchased from the Foundry by the CERN ASIC Support
- Radiation characterization will follow.
- https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx

 G. Traversi (Bergamo/Pavia) / INFN Falaphel project. Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tv_rx DIGITAL TO ANALOG CONVERTER (8-BIT) Markus Piller (DOCT, CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 datasheet https://asic-support-28.web.cern.ch/docs2/slvs_tv_rx DIFFERENTIAL LINE DRIVERS AND RECEIVERS Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tv_rx RAIL TO RAIL OPERATIONAL AMPLIFIER Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tv_rx RAIL TO RAIL OPERATIONAL AMPLIFIER Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tv_rx DIGITAL PLL Tobias Hofmann (CERN EP-R&D WP5) Markus Piller (DOCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tv_rx 	BAN	IDGAP VOLTAGE REFERENCE & TEMP MONITOR	RAII	L TO RAIL OPERATIONAL AMPLIFIER
 Design completed. Submitted in Jan 2022 whttps://asic-support-28.web.cern.ch/docs2/slvs_tx_rx Design completed. To be submitted in Dec. 2022. whttps://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL TO ANALOG CONVERTER (8-BIT) Markus Piller (DOCT, CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 datasheet https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIFFERENTIAL LINE DRIVERS AND RECEIVERS Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx RAIL TO RAIL OPERATIONAL AMPLIFIER Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx ANALOG PLL Tobias Hofmann (CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Markus Piller (DCCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	-	G. Traversi (Bergamo/Pavia) / INFN Falaphel project	2	Jan Kaplon (CERN EP-ESE)
	曲	Design completed. Submitted in Jan 2022	曲	Design completed. To be submitted in Dec. 2022.
DIGITAL TO ANALOG CONVERTER (8-BIT) ▲ Markus Piller (DOCT, CERN EP-R&D WP5) ▲ Doc FOR MONITORING (12-BIT) ▲ Tobias Hofmann (CERN EP-R&D WP5) ▲ Franco Bandi (CERN EP-R&D WP5) ▲ Franco Bandi (CERN EP-R&D WP5) ▲ Design completed. Submitted in Jan 2022 Ø https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx PARLUS Piller (CERN, EP-R&D WP5) ▲ Franco Bandi (CERN EP-R&D WP5) ▲ Design completed. Submitted in Jan 2022 Ø https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx ANALOG PLL ▲ Tobias Hofmann (CERN EP-R&D WP5) ■ In progress Ø https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL ▲ Tobias Hofmann (CERN EP-R&D WP5) ■ In progress Ø https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DECDC CONVERTER ▲ Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) ■ In progress Ø https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx	ଡ	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx	Ø	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx
 Markus Piller (DOCT, CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 datasheet https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIFFERENTIAL LINE DRIVERS AND RECEIVERS Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx ANALOG PLL Tobias Hofmann (CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL DIGITAL PLL DIGITAL PLL Markus Piller (DCCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DECC CONVERTER Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	DIG	ITAL TO ANALOG CONVERTER (8-BIT)	ADC	C FOR MONITORING (12-BIT)
 besign completed. Submitted in Jan 2022 datasheet https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx PTARCO Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx ANALOG PLL Tobias Hofmann (CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Markus Piller (DOCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	•	Markus Piller (DOCT, CERN EP-R&D WP5)	.	Tobias Hofmann (CERN EP-R&D WP5)
 datasheet https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx Pranco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx Markus Piller (CERN, DOCT) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Markus Piller (DOCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Markus Piller (DOCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DICCC CONVERTER Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	曲	Design completed. Submitted in Jan 2022	莆	In progress
DIFFERENTIAL LINE DRIVERS AND RECEIVERS ▲ Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022	ଡ	datasheet https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx	Ø	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx
 Franco Bandi (CERN EP-R&D WP5) Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx ANALOG PLL Tobias Hofmann (CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Tobias Hofmann (CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	DIFF	ERENTIAL LINE DRIVERS AND RECEIVERS	RAI	L TO RAIL OPERATIONAL AMPLIFIER
 Design completed. Submitted in Jan 2022 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx ANALOG PLL Tobias Hofmann (CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Markus Piller (DOCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DCDC CONVERTER Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	•	Franco Bandi (CERN EP-R&D WP5)	•	Markus Piller (CERN, DOCT)
 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DIGITAL PLL Markus Piller (DOCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DCDC CONVERTER Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	曲	Design completed. Submitted in Jan 2022		In progress
ANALOG PLL DIGITAL PLL ▲ Tobias Hofmann (CERN EP-R&D WP5) ▲ Markus Piller (DOCT, CERN EP-R&D WP5) ★ In progress	ଡ	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx	ଡ	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx
 Tobias Hofmann (CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx Markus Piller (DOCT, CERN EP-R&D WP5) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DCDC CONVERTER Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	ANA	LOG PLL	DIG	ITAL PLL
 in progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx DCDC CONVERTER Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx Mitps://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	-	Tobias Hofmann (CERN EP-R&D WP5)	2	Markus Piller (DOCT, CERN EP-R&D WP5)
 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx bttps://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	曲	In progress	曲	In progress
DCDC CONVERTER Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx LDO Stefano Michelis and Giacomo Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx Wether the state of the state	Ø	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx	Ø	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx
 Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE) In progress https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	DCD	DC CONVERTER	LDC)
In progress In progress Image: white the progress web.cern.ch/docs2/slvs_tx_rx Image: white the progress web.cern.ch/docs2/slvs_tx_rx Image: white the progress web.cern.ch/docs2/slvs_tx_rx Image: white the progress web.cern.ch/docs2/slvs_tx_rx	.	Stefano Michelis and Giacomo. Ripamonti (CERN EP-ESE)	.	Stefano Michelis and Giacomo Ripamonti (CERN EP-ESE)
 https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx 	曲	In progress	前	In progress
	Ø	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx	@	https://asic-support-28.web.cern.ch/docs2/slvs_tx_rx

Test chip Submitted in August 2023

- **GOAL:** Silicon-prove the IP blocks designed in 28nm, by functional and radiation testing
- Marco Andorno (ASIC Support) prepared a test chip that integrates several IP-blocks from CERN or form other institutes providing a single MPW run to test multiple blocks, and uniform testing requirements
- The analog and mixed-signal blocks were assembled Digital-on-Top, along with a control and configuration interface (triplicated):

IP-Block	Designer
SLVS Transmitter and Receiver	Franco Bandi (CERN)
Digital PLL	Vladimir Gromov (Nikhef)
Rail-to-rail analog buffer	Jan Kaplon (CERN)
Analog frontend	Markus Piller (TU Gratz)
Bandgap reference (4 different versions)	Grzegorz Wegrzyn, Stefano Michelis (CERN)
TIMO28 (TID response variation IP block)	Giulio Borghello (CERN)
8-bit DAC	Markus Piller (TU Gratz), Viros Sriskaran
12-bit Sigma-Delta DAC	Can Akgun (Nikhef)
Test structures (4 types)	SOFICS

CERN ASIC Support is taking care of:

- Packaging in a uniform way the IP blocks
- Maintenance of the shared repositories (Cliosoft) and institutes access and provide access upon request

The ownership of the IP block remains with the designer. The platform allow to advertise and share the IP blocks with the community.

List of available IP blocks and datasheets:

- F2 28: https://asic-support-28.web.cern.ch/ip-blocks/
- F2 65: https://asic-support-65.web.cern.ch/docs2/
- F2 130: https://asic-support-130.web.cern.ch/docs2/
- F1 130: https://espace.cern.ch/asics-support/gf130/

All institutes that wish to contribute are invited to participate to common repositories with analog and digital IP blocks, shared within the community! Get in touch!

	HOME	DESIGN PLATFORMS	FOUNDRY SERVICES	NDA & EXPORT CONTROL V	TECHNICAL E	OCUMENTS ¥	IP BLOCKS ¥	DESIGN FLOWS	TRAINING	FORUM	CONTACTS
Jan Harris			IPSA	nd Macrc) BIO he high Energy F	C K S hysics commur	nity				
in this The IF - Serve	page you ca blocks are a er name: CEF	n find information about th wailable on a shared ClioS: NSRV85	ie IP blocks available for d oft repository:	TSMC 28 NM DESIGN PLATFC	JRM > TI	CHNICAL DOCU	MENTS MAC	ROS AND IPS DI	GITAL IMPLEM	ENTATION	TUTORIALS
- Proje	ct name: CE All ir	RN_MIC_TSMC28_HEP_Des:	are invited to contrib	ute with analog and digita	I IP blocks sh	ared within th	e community.	Get in touch!			
RAD # Per This co SLV: # Per In this	TOL ESD led by Marco locument pr NTINUE REA S TRANS Red by Franco a section you	PROTECTION LIBB Anderm Macroblocks orvides information on So DNo MITTER AND RECE N. Band Macroblocks us can access the SLVS Tr DNo	NRY , IPs iffes 0.9V/1.2V/1.8V ESC ifVER h, IPs ansmitter and Receiver (D library for TSMC's N28 HPCM	#+ process.	Categorie Designe Foundry IPs and Tags Applicat (IPa) (Tutorial	IS Introduction of the second	aundy) (Guide (Manuals) (P	DK		
TSM ≜ Pos CERN CC	IC DUAL- ted by Marco has access	PORT SRAM Anderno W Macrobiocka a to the foundry memory (, iPs compiler for this dual-po	rt SRAM.							
TSM ≗ Pos 8x32 cc	IC ELECT eed by Marco TSMC electr	RICAL FUSE Anderno Macroblocks rical fuse. Datasheet DB_ DING	, IPs TEF28HPCP8X32HD18_	PHRM_190A							

System-on-Chip design approach

Future detector upgrades will require more complex ASICs

They require advanced technology nodes, that come with high development costs in terms of design time, verification and costs

An abstract design methodology, focused on programmability and reusability will allow to:

- Develop reusable IP blocks
- Standardize interconnects for IP blocks
- Replace state machines with a control processor (RISC-V based)
- Programmable, flexible logic blocks (SoC Ecosystem, cores, eFPGA, NoCs)
- Enhance Hierarchical Digital Implementation and Verifications
- Use of Open Source scripts and tools

(past successful project: Development of SEU-robust, radiation tolerant and industry compatible programmable logic components

250nm RT-FPGA

Hardware generation 👎 Software generation

• Design team: R. Pejasinovic, M. Andorno, A. Caratelli, A. Nookala, K. Kloukinas

Work in progress

Work in progress

NDAs

- Special 3-way NDA (institute-IMEC-Foundry) that permit collaborative work
 - Permit the exchange of designs and technical data among collaborators
 - CERN and 45 institutes have signed the 3-way NDA

Commercial frame contract

- CERN has a frame contract that allows small-scale prototyping (MPWs)
- It will be extended to cover full-maskset engineering and production works
- The frame contract is accessible by HEP Institutes and Universities, via CERN

https://asicsupport.web.cern.ch

Alessandro Caratelli, Marco Andorno, Kostas Kloukinas

28nm Designer's Guide

- **Technology Overview**
- **Design Guidelines**
- Reliabilty
- **Tutorials**

Available at

https://asic-support-28.web.cern.ch/tech-docs/designers guide/

April 18, 2023 markus.piller@cern.ch franco.nahuel.bandi@cern.ch alessandro.caratelli@cern.ch marco.andorno@cern.ch stefano.michelis@cern.ch davide.ceresa@cern.ch rafael.ballabriga@cern.ch stefan.biereigel@cern.ch

TSMC28nm Designer's Guide and Technology Overview

Markus Piller Franco Nahuel Bandi Alessandro Caratelli Marco Andorno Stefano Michelis Davide Ceresa Rafael Ballabriga Stefan Biereigel

Keywords: CMOS, 28nm, TSMC, Designers guide, Front-End, Back-End, FEOL, BEOL, trasistor, capacitor, resistor, current density, electromigration

Summary This document gives the minimum requirements for ASIC designs in TSMC 28nm technology and gives a technology overview. The specified requirements are a guide to building a common basis for IP blocks within the new technology. Additional requirements or adaptions may be defined within the project's proposal specification document.

Contents

1 Disclaimer 3

2	Rev	visions					
3	Ger	General Information					
4	Des	igner's Guide					
	4.1	Transistor flavours					
	4.2	Metals					
	4.3	Supply voltage					
	4.4	Temperature					
	4.5	Corners (+ Supply voltage and Temperature)					

v0.3

4

5

INFO AND SUBSCRIPTION: https://asicsupport.web.cern.ch/training_courses/workshop28nm

A total of 145 Designers from HEP institutes have attended these training workshops in the last 3 years

Digital-on-top hierarchical Implementation in workshop

DoT Workshop

- Learn the main concepts for designing in 65nm for the High energy Physics environment
- Learn the main concepts of the digital implementation from the synthesis, physical implementation and signoff (RTL to GDS)
- Perform synthesis, physical implementation and signoff steps
- Exercise bottom-up and top-down hierarchical design approaches
- Co-developed between CERN EP-ESE ASIC Support service and Cadence VCAD

2020 TO 2022: 6 TRAINING SESSIONS

System Verilog Advanced Verification Environment using UVM workshop

Verification / UVM

- Learn the main concepts of functional verification for the High energy Physics
- Learn the main concepts of digital design verification
- Learn about the Universal Verification Methodology (UVM)
- In the lab sessions you will learn how to build your own UVC and verification environment
- A Cadence Training Course adapted for the High Energy Physics community requirements

SINCE 2020: 3 TRAINING SESSIONS NEXT SESSION TO BE SCHEDULED Workshop on Mixed-Signal design in 28nm process

Designing in 28nm

- Learn the main concepts for designing in 28nm for the High energy Physics environment
- Learn the main concepts of the analog and Mixed-Signal design in 28nm, and analog IP characterization
- Learn main concepts about TIDs and SEUs tolerance design
- Learn the main concepts of the digital implementation from the synthesis, physical implementation and signoff (RTL to GDS)

SINCE JAN 2023: **3 TRAINING SESSIONS** NEXT SESSION END OF 2023

Purpose of the 28nm Forum

- CERN to communicate the EP R&D WP5 activities
- Institutes to present their R&D activities and plans
- Identify synergies
- Establish collaborations

28nm Technology Forum Sessions

1st session (Nov. 12, 2020) <u>https://indico.cern.ch/event/970389/</u> 2nd session (Mar. 10, 2021) <u>https://indico.cern.ch/event/1009040/</u> 3rd session (July 28, 2021) <u>https://indico.cern.ch/event/1042567/</u> 4th session (Mar 23, 2022) <u>https://indico.cern.ch/event/1132318/</u> 5th session (Nov 3, 2022) <u>https://indico.cern.ch/event/1207114/</u> 6th session (Nov ..., 2023) **focus on IP blocks**

- Restricted access; requires registration
- Self-inscribed CERN e-group: 28nm-Forum@cern.ch

- A 28nm bulk CMOS technology has been fully characterized for operation up to 1GRad TID
- A Common Design Platform and a Collaborative Framework are implemented to facilitate design work in the HEP community

PROTOTYPES on MPW runs in 2022-23

 CERN EP R&D WP5 "IC Technologies" enabled the development ASIC support & Foundry Service facilitates long term access and support

Institutes wishing to join should contact CERN ASIC Support Service <u>asic.support@cern.ch</u>

Conceptual Diagram

Analog functions

Chip Design and Manufacturing Cost under Different Process Nodes: Data Source from IBS*

- Escalating development costs when going Ultra Deep Submicron & Nanometer scale
- At present the 28nm node is the optimum techno-economic choice (or limit ?)

Kostas.Kloukinas@cern.ch

Three technologies were evaluated for TID radiation tolerance

WP5.1 IC Technology Survey

- 28nm bulk CMOS processes
 - Foundry A (one variant: Low Power)
 - Foundry B (two variants: High Performance, Low Power)
- 22nm CMOS FD-SOI process
 - Foundry A
- Selected a <u>28nm bulk CMOS</u> technology as the next mainstream node for future Rad-Tol designs
 - Radiation Tolerance
 - Accessibility
 - Technical support
 - Foundry IP blocks
 - Long Term availability
 - Cost

Europractice Regular MPWs and mini@sics

Mainstream Foundry

Prototyped & irradiated

test chips

