Timepix4 performance

Riccardo Bolzonella, INFN and University of Ferrara On behalf of Medipix4 collaboration

VERTEX23 workshop - Sestri Levante, 16th - 20th October 2023

Overview

- Medipix4 collaboration and Timepix4 overview
- Timepix4 architecture and operating principle
 - pixels arrangement
 - Through-Silicon-Vias and Wire Bonds
 - acquisition modes
 - Time-of-Arrival (ToA) and Time-over-Threshold (ToT) measurements
- Measured performance
- Conclusions

Medipix4 collaboration

Medipix4 Collaboration is set to provide the next generation of Medipix family chips (Medipix4 and Timepix4):

- Agreement signed on May 2016
- 19 collaboration members

➤ Timepix4 (2019)

- 65nm technology
- $\circ~$ Pixel matrix of 512 x 448 pixels (55 x 55 $\mu m^2)$
- Particle identification and tracking (Data-driven and zero suppressed)
- Sub-ns time binning
- X-ray Imaging (full frame based with CRW sequential readout)
- Improved energy resolution

➤ Medipix4 (2022)

- 130nm technology
- Pixel matrix of 320 x 320 (75 x 75 μm^2) or 160 x 160 (150 x 150 μm^2)
- Charge Summing architecture

> Both chips have a 4-side buttable architecture:

- Periphery integrated inside the pixel matrix
- Prepare for readout using TSV (Through-Silicon-Vias)
- Larger ASICs

- CEA, Paris, France
- CERN, Geneva, Switzerland
- DESY, Hamburg, Germany
- Diamond Light Source, England, UK
- IEAP, Czech Technical University, Prague, Czech R.
- IFAE, Barcelona, Spain
- JINR, Dubna, Russian Federation
- NIKHEF, Amsterdam, The Netherlands
- University of California, Berkeley, USA
- University of Canterbury, Christchurch, New Zealand
- University of Geneva, Switzerland
- University of Glasgow, Scotland, UK
- University of Houston, USA
- University of Maastricht, The Netherlands
- University of Oxford, England, UK
- INFN, Italy
- LNLS, Brazil
- CSNS, China
- PNRI, Philippines

Expected global parameters

			Timepix3 (2013)	Timepix4 (2019)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixel Size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448	
Sensitive area			1.98 cm ²	6.94 cm ²	
	Data driven (Tracking)	Mode	TOT and TOA		
les		Event Packet	48-bit	64-bit	
Noc		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s	
rt T		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	
ope	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
Rea		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm²/s	
TOT energy resolution		ion	< 2KeV	< 1Kev	
TOA binning resolution			1.56ns	195ps	
TOA dynamic range			409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz)	
Readout bandwidth			≤ 5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)	
Target global minimum threshold			<500 e ⁻	<500 e ⁻	

Timepix4 submissions

> Particle tracking:

- very high rate pixel telescope
- sensor studies with < 100 ps timing resolution and ~10 μm spatial resolution
- Time-of-flight mass spectroscopy
- Radiation monitors
- Compton camera
- Gamma and neutron imaging
- X-ray imaging

> Frame-based imaging:

X-ray imaging in synchrotrons with very high rates (> 10⁹ particles/mm²/s)

BOTTOM Matrix 256 x 448 55 μm²

- 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each

- ➤ 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each
- > 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)

- > 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each
- > 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)
- 2 wire bond extenders on edge peripheries

- > 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each
- > 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)
- 2 wire bond extenders on edge peripheries
- Through-Silicon-Via compatible
 - 4-side buttable
 - possibility to place several chips adjacent to cover larger detectors
- Dicing options:
 - \circ with wire bonds: ~93.7 % active area
 - \circ with TSV: ~99.5 % active area

Timepix4 arrangement: TSV, Wire bonds

- ➤ 2 matrices: TOP and BOTTOM
 - 256 x 448 pixels each
- > 3 peripheries:
 - TOP and BOTTOM: data readout (16 x 10.24 Gbps serializers)
 - CENTER: analog blocks (global DACs and ADCs, ...)
- > 2 wire bond extenders on edge peripheries
- Through-Silicon-Via compatible
 - 4-side buttable
 - possibility to place several chips adjacent to cover larger detectors
- ➤ Dicing options:
 - with wire bonds: \sim 93.7 % active area
 - \circ with TSV: ~99.5 % active area

- ➤ Pixel level:
 - analog front-end:
 - pixel enable
 - input pad
 - charge integration circuit
 - local threshold
 - local test pulse
 - digital front-end:
 - pixel mask
 - TDC and time stamp
- ➢ SP level:
 - VCO
 - pixels readout
- ➤ SPG level:
 - Adjustable Delay Buffer, to correctly distribute the reference clock to the pixels across the double column

- Event-based readout \succ
- Zero-suppressed \succ
- 2 acquisition modes: \succ
 - 24-bit photon counting: 0
 - pixel coordinates •
 - photon counting per pi

24

	PC24bit mode packets specification		
	Name	Width	Bits used
er pixei	Тор	1	[63:63]
	EoC	6	[62:55]
Address: 18 bits	SPGroup	4	[54:51]
	Spixel	2	[50:49]
	Pixel	3	[48:46]
Dhatan aguntin m	UNUSED	22	[45:24]
Photon counting:	Event Count	24	[23:0]

D C D 41 1.

- Event-based readout
- > Zero-suppressed
- ➤ 2 acquisition modes:
 - 24-bit photon counting:
 - pixel coordinates
 - photon counting per pixel
 - ToA-ToT mode:
 - pixel coordinates
 - timestamp
 - charge

Charge: 21 bits

ToA/ToT mode packets specification				
Name Width Bits used				
Top 1 [63:63]				
EoC 6 [62:55]				
SPGroup 4 [54:51]				
Spixel 2 [50:49]				
Pixel 3 [48:46]				
ToA 16 [45:30]				
ufToA_start 4 [29:26]				
ufToA_stop 4 [25:22]				
fToA_rise 5 [21:17]				
fToA_fall 5 [16:12]				
ToT 11 [11:1]				
Pileup 1 [0:0]				

Time: 29 bits

- Event-based readout
- > Zero-suppressed
- > 2 acquisition modes:
 - 24-bit photon counting:
 - pixel coordinates
 - photon counting per pixel
 - ToA-ToT mode:
 - pixel coordinates
 - timestamp
 - charge
- 64-bit packets for each event, encoded with Aurora
 64b/66b standard encoding communication protocol
- Output via:
 - slow control: 40 Mb/s (2.6 Hz/pixel)
 - high speed links: from 40 Mb/s to 160 Gb/s (10.8 kHz/pixel)

ToA/ToT mode packets specification					
Name	Width	Bits used			
Тор	1	[63:63]			
EoC	6	[62:55]			
SPGroup	4	[54:51]			
Spixel	2	[50:49]			
Pixel	3	[48:46]			
ToA	16	[45:30]			
ufToA_start	4	[29:26]			
ufToA_stop	4	[25:22]			
fToA_rise	5	[21:17]			
fToA_fall	5	[16:12]			
ТоТ	11	[11:1]			
Pileup	1	[0:0]			

ToA and ToT measurements

- ToA measurement:
 - coarse Time-of-Arrival (ToA), 40 MHz clock (25 ns Ο bins width)
 - fine-ToA bins, 640 MHz clock, generated by the 0 VCO (1.56 ns bins width)
 - Ultrafine-ToA, by 4 copies of 640 MHz clock (195 Ο ps bins width)

n+1

ToT measurements: only coarse and fine \succ

> 1 2

3 4

UfToA_{start} code UfToA_{stop} code

Fine ToA

40 MHz reference

640 MHz phases

K. Heijhoff et al 2022 JINST 17 P07006

n + 3

n+2

- Gigabit Wireline Transmitter with a Clock Cleaner (GWT-CC):
 - serializes data stream
 - transmits data to an off-chip receiver
- High configurability:
 - each link can be configured to operate at different speed, from 40 Mb/s to 10.24 Gb/s
 - possible to use from 1 to 8 links per half-matrix
- Max bandwidth of 160 Gb/s
- PRBS generator for links tests
- Tested up to 5.12 Gb/s, both with WB and TSV connection
- Timepix4 and control board links alignment and physics measurement performed only @ 2.56 Gb/s

Timepix4 threshold equalization and noise

- Threshold equalization:
 - 24-bit photon counting mode
 - global threshold shifted using 5-bit local DAC
 - just few pixel masked
 - threshold distribution from ~450 e⁻ r.m.s. pre-equalization to < 40 e⁻ r.m.s. post-equalization

X. Llopart (CERN)

Timepix4 threshold equalization and noise

- Threshold equalization:
 - 24-bit photon counting mode
 - global threshold shifted using 5-bit local DAC
 - just few pixel masked
 - threshold distribution from ~450 e⁻ r.m.s. pre-equalization to < 40 e⁻ r.m.s.
 - post-equalization
- Noise after equalization:
 ENC average of ~⁻
 - ENC average of ~70 e⁻ r.m.s.

X. Llopart (CERN)

Timepix4 characterization measurements - VCO calibration

- On pixel VCO oscillation frequency controlled by a PLL at the center of the chip (@ 640 MHz nominal)
- It has been measured that on pixel VCO oscillate around 640 MHz with a spread of around 40 MHz

Timepix4 characterization measurements - VCO calibration

- On pixel VCO oscillation frequency controlled by a PLL at the center of the chip (@ 640 MHz nominal)
- It has been measured that on pixel VCO oscillate around 640 MHz with a spread of around 40 MHz
- Spread caused by power supply dispersion due to large size and wire bonds: large improvements expected with TSV
- Finer ToA bins generated with different width
- Timing performances heavily affected by this effect
- Internal test pulse tool exploited to calibrate
 VCO frequencies for the whole matrix
 (28672 VCO)

- Analog testpulse
- Non linear calibration
- Threshold set to 1 ke⁻
- Per-pixel calibration done over the whole matrix

- Analog testpulse
- Non linear calibration
- Threshold set to 1 ke⁻
- Per-pixel calibration done over the whole matrix
- Automatic algorithm exploiting fast read-out
- Calibration fit parameters distribution

 $ToT(Q) = p_0 + p_1 Q + p_2 / (p_3 + Q)$

ToT vs Q calibration

• Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)

ToT vs Q calibration

• Validation with radioactive sources(¹³⁷Cs and ²⁴¹Am superimposed spectra)

Timing resolution measurements - Time bins sizes measurements

- External testpulse used to measure fToA and UfToA bins width:
 - delay settable up to ps precision
 - signals sent directly to the Timepix4 through digital pixels
- Correct VCO on Timepix4_v2:
 - average fToA bin size: 1.56 ns
 - average UfToA bin size: ~ 195 ps
- Some UfToA bins with much higher size

[K. Heijhoff et al 2022 JINST 17 P07006]

- Analog internal test pulse used to measure the analog front-end jitter
- Hole-collecting mode:
 - jitter asymptotic to ~100 ps r.m.s.
 - bare Timepix4 and Timepix4 bonded to Si sensor show similar trends
 - at low charge, worst resolution with sensor bonded
- Electron-collecting mode:
 - no asymptotic trend
 - resolution lower than 50 ps r.m.s. both with bare and bonded chips

Timing resolution measurements - Laser measurements

Spidr4 control board

Timepix4v2:

- bonded to a 100 μm n-on-p Si detector biased at -150 V
- o metalization with holes pattern
- Courtesy of CERN and NIKHEF Medipix4/VELO groups

Waveform generator

- input signal to digital pixels
- laser trigger

Laser:

- o 1060 nm
- variable attenuator

Spidr4 control board

To digital pixels

Period: 5 ms

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (4DPHOTON project, grant agreement No. 819627)

- Laser focused using micro-collimator:
 - \circ σ = 1.4 pixel = 77 μ m
- Laser spot in **fixed position** for all presented measurements

- Laser focused using micro-collimator:
 - \circ σ = 1.4 pixel = 77 μ m
- Laser spot in **fixed position** for all presented measurements
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

- Laser focused using micro-collimator:
 - \circ σ = 1.4 pixel = 77 μ m
- Laser spot in **fixed position** for all presented measurements
- Measurements using variable laser attenuation, populating a wide ToT range on each pixel
- Different time walk trends on different pixels
- Time walk corrected separately on each pixel

- ToT vs charge calibration applied to each pixel
- Distribution of timing resolution as a function of injected charge
- For the pixel [305,144], where the laser is focused, the standard deviation saturates at 128±1 ps rms
- Subtracting the contribution of the reference TDC (60 ps), a resolution of 111±1 ps rms is obtained

Cluster timing resolution

- ➢ For each cluster:
 - weighted average of ToA using charge as weights
 - cluster charge computed
- Timing resolution dependency on cluster charge:
 - best result: $\sigma_{ToADiffAvg} = 79 \pm 1 ps rms$
 - timing resolution subtracting reference TDC contribution:

 $\sigma_{_{TOAAvg}}$ =49 ± 1 ps rms

Through-Silicon Via first tests with Timepix4v0 in IZM (Germany)

- First Timepix4v0 samples received on June 2023 (43 TSV ASICs received)
- > IZM to finish remaining 2 Timepix4v1 wafers and 3 Timepix4v2
- First devices mounted on Nikhef TSV chipboard (with 2 different bonding methods)

Through-Silicon Via first tests with Timepix4v0 in IZM (Germany)

- First tests very promising, with both the bonding techniques:
 - chip equalized
 - average ENC of $\sim 60 e^{-}$ r.m.s.
 - fast links locking at 5.12 Gb/s

Conclusions

- ➤ Timepix4:
 - new hybrid pixel detector for tracking and imaging developed by the Medipix4 collaboration

> Characteristics:

- \circ large active area: 6.94 cm²
- 4-side buttable architecture
- ToA: 1.6 ms dynamic range; 195 ps bin size
- ToT: 1.56 ns bin size (~200 e^- rms charge resolution)
- Frame-based PC: 8-bit or 16-bit, up to $5x10^9$ hits/mm²/s
- Readout: up to 160 Gb/s, encoded 64b/66b
- > Performance:
 - energy calibration with Timepix4v2 bonded to 100 μm n-on-p Si detector, with resolution up to 8% (@ 60 keV) and FWHM up to 1.3 keV (@ 8.6 keV)
 - timing resolution measured with internal analog testpulse ~40 ps on single pixel
 - $\circ~$ timing resolution measured with laser with Timepix4 bonded to 100 μm n-on-p Si detector biased at -150 V: ~110 ps on single pixels and ~50 ps on clusters
- > Next steps:
 - characterization with TSV processed wafers and TSV compatible chipboard (NIKHEF)
 - several DAQs being designed by members of the collaboration

Backup

Readout modes: frame based

- Photon counting information
- > 2 counter depths modes:
 - o 8-bit
 - **16-bit**
- Full frame readout
- Max count rate (with 16 high speed links enabled): ~5 x 10⁹ hits/mm/s²

Readout modes: frame based

- ➤ Timepix4v1 with 300 µm Si sensor
- ➢ CRW 16 bit frame based
- X-ray source (s2 acquisition)

Readout modes: frame based

- Frame based through high-speed links implemented
- Up to now tested only with internal testpulse
- Both 8-bit and 16-bit modes tested

Analog power supply distribution

	Total I (chip)		2 WB	3 TSV
Nominal Analog Power	×2200 4	Vdrop [VDDA-GNDA]	19.6 mV	6.9 mV
[10 µA/pixel]	2300 mA	Imax pad	60 mA	57 mA
Low Analog Power		Vdrop [VDDA-GNDA]	1.96mV	0.69mV
[1 µA/pixel]	~230 mA	Imax pad	6 mA	5.7 mA

3 TSV

Digital power consumption and cooling

- > Timepix4 power consumption \sim 5 W
- Goal: stable operation with 20°C inside the vacuum tube
 - Cold finger attached to the ceramic carrier

X. Llopart (CERN)

- External testpulse used to measure fToA and UfToA bins:
 - delay settable up to ps precision
 - signals sent directly to the Timepix4 through digital pixels
 - error function fit of even and odd fToA and UfToA to estimate bins width
- VCO too fast on Timepix4_v1:
 - average fToA bin size: 1.26 ns
 - \circ average UfToA bin size: ~ 150 ps

- > Active area: ~ 7 cm^2
- Super Pixel (SP): 2 adjacent columns of 4 pixel
- Super Pixel Group (SPG): column of 4 SP
- 16 SPG in a column form a Double column

Timepix generations

		Timepix	Timepix2	Timepix3	Timepix4	
Tech. node (nm)		IBM 250	TSMC 130	IBM 130	TSMC 65	
Year			2005	2018	2013	2019
Pixel size (mm)			55	55	55	55
# pixels (x x y)			256 x 256	256 x 256	256 x 256	448 x 512
Sensitive area		1.98 cm ²	1.98 cm ²	1.98 cm ²	6.94 cm ²	
Number of sides for tiling using WB		3 (87.1% active area)	3 (85.6% active area)	3 (86.7% active area)	2 (93.7% active area)	
Number of sides for tiling using TSV		No TSV ready	3 (85.6% active area)	3 (91.6% active area)	4 (99.3% active area)	
Front-end		positive (h+)	Gain (16mV/kh†) (Volcano >0.8MeV/pixel)	High Gain (25mV/kh*) Logarithmic Gain (19mV/kh*)	High Gain (45mV/kh*) (Volcano >0.3MeV/pixel)	High Gain (35mV/kh*) Low Gain (20mV/kh*) Logarithmic Gain
	negative (e-)		Gain (16mV/keˈ)	High Gain (25mV/ke ⁻)	High Gain (45mV/ke')	High Gain (35mV/ke ⁻) Low Gain (20mV/ke ⁻)
Minimum detectable charge		~750 e ⁻	~600 e ⁻	~500 e	~500 e ⁻	
	Tracking (Event arrival time and/or energy)	Readout	Full Frame-based (Sequential R/W)	Full Frame-based (Sequential or Continuous R/W)	Data-driven (48-bit packet per pixel hit)	Data-driven (64-bit packet per pixel hit)
		Event Data	TOT or TOA	TOT and TOA; TOT or TOA	TOT & TOA	TOT & TOA
		TOT energy resolution	<3keV (FWHM Si)	~0.75keV (FWHM Si)	~2KeV (FWHM Si)	~1KeV (FWHM Si)
		TOA bin size	10ns (@100MHz)	10ns (@100MHz)	1.56ns (On-pixel TDC @40MHz)	195ps (On-pixel TDC @40MHz)
		TOA dynamic range	118.1µs (@100MHz)	2.62ms (@100MHz)	409.6μs (@40MHz)	1.63ms (@40MHz)
Operation Modes		Max Rate	<1x10 ⁶ hits/cm ² /s (with 300µs readout dead time)	<1x10 ⁶ hits/cm ² /s (no readout dead time)	43x10 ⁶ hits/cm ² /s (no readout dead time)	358x10 ⁶ hits/cm ² /s (no readout dead time)
modes		Max Pix Rate	33 Hz/pixel	33 Hz/pixel	1.3 KHz/pixel	10.8 KHz/pixel
	Imaging (Event counting)	Readout	Full Frame-based (Sequential R/W)	Full Frame-based (Sequential or Continuous R/W)	Zero-suppressed (with pixel addr) (Sequential R/W)	Full Frame-based (Continuous R/W)
		Counter depth	14-bits	10-bit or 14-bit	Counting (10-bit) and integral TOT (14-bit)	8-bits or 16-bits
		Frame rate	100 fps @1x100Mbps 3.2 kfps @32x100Mbps	4.9 kfps @10-bit 32x100Mbps 3.5 kfps @14-bit 32x100Mbps	1.62 kfps @48-bit 8x640Mbps	89.2 kfps @8-bit 16x163Gbps 44.8 kfps @16-bit 16x163Gbps
		Max Count Rate	~35 x 10 ⁹ hits/cm²/s	~35 x 10 ⁹ hits/cm ² /s	~82 x 10 ⁹ hits/cm ² /s	~800 x 10 ⁹ hits/cm ² /s
Maximum Readout bandwidth		3.2Gbps (32 x 100MHz)	3.2Gbps (32 x 100MHz)	≤5.12Gbps (8x SLVS@640 Mbps)	≤163.84Gbps (16x @10.24 Gbps)	

Medipix chips family

- Photon counting chips
- Frame based readout

- > Pixel arrangement:
 - 256 x 256 pixels
 - \circ 55 µm pitch
- Frame based readout
- > Operating modes:
 - \circ arrival time mode
 - energy mode (ToT measurement)
 - \circ event counting
- Timing resolution: 10 ns
- ➤ Dead time per pixel: 300 µs

- > Pixel arrangement:
 - 256 x 256 pixels
 - \circ 55 µm pitch
- Particle with both polarities measurable
- Simultaneous ToA and ToT information per pixel
- Data-driven readout introduction (event-by-event readout and 0-suppressed): decreased dead time

Improved time resolution: 1.56 ns

High-speed readout

- Gigabit Wireline Transmitter with a Clock Cleaner (GWT-CC):
 - serializes data stream
 - transmits data to an off-chip receiver
- Two operation mode:
 - high-speed: 80 Mb/s 10.24 Gb/s per link
 - lower-speed: 40 Mb/s 5.12 Gb/s per link
- Total of 16 links (8 per half-matrix): max bandwidth of 160 Gb/s
- PRBS generator for links tests
- Tests performed on each link at each possible frequency:
 - eye diagram well opened @ 2.56 Gb/s

- VCO of different pixels oscillate with different frequencies
- Finer ToA bins generated with different width
- ToA and ToT measurements heavily affected by this effect

- Analog internal test pulse used to measure the analog front-end jitter
- Hole-collecting mode:
 - jitter asymptotic to ~100 ps r.m.s.
 - bare Timepix4 and Timepix4 bonded to Si sensor show similar trends
 - at low charge, worst resolution with sensor bonded
- Electron-collecting mode:
 - no asymptotic trend
 - resolution lower than 50 ps r.m.s. both with bare and bonded chips
- Resolution improved changing discriminator bias

Timing resolution measurements - Test pulse

- Analog internal test pulse used to measure the analog front-end jitter
- Hole-collecting mode:
 - jitter asymptotic to ~100 ps r.m.s.
 - bare Timepix4 and Timepix4 bonded to Si sensor show similar trends
 - at low charge, worst resolution with sensor bonded
- Electron-collecting mode:
 - no asymptotic trend
 - resolution lower than 50 ps r.m.s. both with bare and bonded chips
- Resolution improved changing discriminator bias
- Resolution dependence on preamp current

- Analog internal test pulse used to measure the analog front-end jitter
- Hole-collecting mode:
 - jitter asymptotic to ~100 ps r.m.s.
 - bare Timepix4 and Timepix4 bonded to Si sensor show similar trends
 - at low charge, worst resolution with sensor bonded
- Electron-collecting mode:
 - no asymptotic trend
 - resolution lower than 50 ps r.m.s. both with bare and bonded chips
- Resolution improved changing discriminator bias
- Resolution dependence on preamp current
- Dependence on threshold

180

h⁺ mode

10.0 ke

