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Motivation for Monolithic Pixel Sensors 

Challenging requirements for future 
collider experiments: 

• Extreme radiation tolerance 

• Large hit rate 
• High granularity 
• Fast response time 

• Large surface  
• Very thin 


Hybrid detectors (ASIC bump-bonded to sensor) 

are the most adopted and field-tested solution 
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MAPS (Monolithic Active Pixel Sensors)

ASICs and sensor on the same substrate

avoid custom bump bonding 

reduced production effort 


industrial-like CMOS production process 

reduced costs

large area detectors


low mass / high granularity detectors

reduced material


small capacitance

large signal/noise ratio


still in R&D phase for HEP

in particular for what concerns radiation hardness 
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Charge collection time ~100 ns via diffusion

ALPIDE - ALICE ITS
A MALTA ancestor:

see L. Schall’ slides for details

A MALTA cousin:

TJ-MonoPix

https://agenda.infn.it/event/35597/timetable/?view=standard_inline_minutes#83-test-beam-performance-of-de
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MALTA chip

Full scale demonstrator* 

180 nm Tower CMOS imaging technology 

2x2 cm2

512 x 512 pixels 

Originally conceived for ATLAS pixel detector upgrade for HL-LHC:


radiation hard up to 1.5 x 1015 neq/cm2

timing response: within 25 ns 

Asynchronous readout architecture  
no time-over-threshold information 

hit info directly transmitted from chip to periphery

reduce power consumption and maintain hit-time information


high data rate (>100 MHz/cm2) 

ALPIDE: < 1014 neq/cm2

ALPIDE: several μsec 

*
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pixel size 36.4 x 36.4 µm2  

thickness down to 50 µm 

available also with 100 and 300 µm 

3x3 µm2 collection electrode  

minimal capacitance (< 5 fF)  

ENC < 15 e- 

low voltage (6 ÷ 55 V) 

low power 

1 µW/pixel 

70 mW/cm2 analog power  

10 mW/cm2 digital power 

MALTA Pixel
LOW DOSE N-TYPE IMPLANT
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ATLAS ITkPIX: ~100 ÷ 150 µm

ATLAS ITkPIX: 80 ÷ 500  V

ATLAS ITkPIX (RD53) <1W/cm2

ATLAS ITkPIX: 50x50 µm2
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MALTA Telescope @ SPS
Dedicated beam telescope  
with 1st generation MALTA chips: 


6 tracking planes 

internal Cz samples @ 30 V ⇨ cl size ~ 2 

scintillator for precise timing reference 

flexible TLU configurations & online monitoring

can host different DUT sizes

permanently installed at SPS

cold box

DUT 1&2

Planes 4-6 Planes 1-3

Cz @ 30 V
EPJC 83 (2023) 7, 581

#hits

time 
since 
trigger

hit 
map

telescope planes DUTs

500 ns

https://link.springer.com/article/10.1140/epjc/s10052-023-11760-z
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MALTA Telescope performance

Spatial resolution: σs = 4.1 μm

larger cluster size improves  
the  analytical estimation  

fit of gaus Ⓧ step σs = 4.7 μm  
includes effects of inhomogeneity and time 
resolution at the edges of the DUT that are 
not taken into account

average time resolution: σt = 2.1 ns 

allows it to operate at high rates


       > 4×106 particles per spill

It is currently used to characterise  
MALTA chips, BCM’, ITk pixels, HGDT’s LGAD

EPJC 83 (2023) 7, 581

https://link.springer.com/article/10.1140/epjc/s10052-023-11760-z
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MALTA2 processing

cascode
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• <ENC> = 9.3 e- 
• RMS = 3.5 e-  

• <ENC> = 9.7 e-  
• RMS = 2.25 e-

Malta2 public plots

Improved the FE in MALTA2


enlarged transistors  & cascode stage

lower noise & higher gain 

Process modifications  
to increase lateral E-field 
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Gap in the low dose N-type implant 

NGAP

Extra Deep P-Well 

XDPW 

High resistivity (3-4 kΩcm) Czochralski substrate

faster charge collection 
No visible differences btw 
NGAP and XDPW

larger depleted region with increasing substrate voltage

larger cluster size

larger radiation resistance 

Backside metallisation
guarantees a good propagation of the 
bias voltage across the whole chip 


better performing than conductive glue

https://ade-pixel-group.web.cern.ch/PublicPlots/?page=view&topic_id=2
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Efficiency arXiv:2308.13231

Full efficiency (~99%) at 150 e-  thresholds 

at substrate voltage VSUB = -6 V

BEFORE irradiation

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
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Efficiency arXiv:2308.13231

Full efficiency (~99%) at 150 e-  thresholds 

at substrate voltage VSUB = -6 V

BEFORE irradiation

> 95% efficiencies up to 2x1015 neq/cm2

at substrate voltage ~20 V

AFTER irradiation

50%

100%

effi
ci

en
cy

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
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Efficiency arXiv:2308.13231

Full efficiency (~99%) at 150 e-  thresholds 

at substrate voltage VSUB = -6 V

> 95% efficiencies up to 2x1015 neq/cm2

at substrate voltage ~20 V  

with higher doping on continuous n-layer* 

AFTER irradiation

*the doping level refers to the 
relative difference in implantation 
dose, approximately 70%.

3x1015

help recovering efficiency on the pixel corners!

50%

100%

90%

100%

effi
ci

en
cy

effi
ci

en
cy

BEFORE irradiation

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
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Cluster size

The cluster size increases for lower thresholds and higher substrate voltages

enhanced charge-sharing effect btw pixels for larger active depths

@ 240 e-


@ 260 e-


@ 120 e-

arXiv:2308.13231

before irradiation after irradiation

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
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Operational Window
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2/cmeq 1 MeV n15 10×3 

95%

40 Hz

arXiv:2308.13231
Malta2 public plots

Full efficiency after 3e15 neq/cm2 with backside metallisation at ~-30 V substrate bias on VH-doped sensors

with a small noise occupancy

Backside metallisation allows propagating the bias voltage over the entire chip* and improves the performance
*A fiducial region (5% of the matrix) for regular backside sample is shown

ITkPIX reference

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
https://ade-pixel-group.web.cern.ch/PublicPlots/?page=view&topic_id=2
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Time of arrival of leading hit in the cluster wrt the scintillator reference

After signal propagation correction

time resolution is  σt ~ 1.7 ns

Convolution of:

Electronics jitter

Time-walk

Charge collection effects

Scintillator jitter (~0.5 ns) 

FPGA readout jitter (~0.9 ns) 

th. = 170 e-

98% of hits collected within 25 ns  
90% of hits collected within 8 ns 

arXiv:2308.13231Timing - before irradiation

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
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Timing - after irradiation arXiv:2308.13231

Charge trapping and changing mobility  
of charge carriers

Uniformity deteriorates  
as the radiation dose increases


Increasing the substrate voltage helps!

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
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Timing - after irradiation w/ VH doping arXiv:2308.13231

Higher doping further improves  
the performance


95% of hits collected within 25 ns  
40% of hits collected within 8 ns 

@ 3 x 1015 neq/cm2

https://cds.cern.ch/record/2868985/files/2308.13231.pdf
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Conclusions

The large R&D campaign of MALTA2 brought  
a combination of modifications including


pixel design

high-resistivity Cz substrates 

backside metallisation

high doping of the n-layer

MALTA3 chip demonstrator under production:  
improved in-pixel digital electronics:  

faster signal generation 
 <1 ns time-stamping in periphery, >1 Gb/s serial output communication 

Four-chip board and flex  
4-chip MALTA board functionality recently demonstrated  
tested successfully in 2023 at SPS

Excellent performance up to 3 x 1015 neq/cm2 
99% efficiency  
< 40 Hz/pixel noise occupancy 
> 95% of the clusters collected within  
the LHC bunch crossing window

First successful application of MALTA chips as telescope planes with σs = 4.1μm & σt = 2.1 ns*

Ongoing measurements to estimate the depletion depth.

*see also the PS telescope application in Brian’s poster for the material measurement of an ATLAS Pixel Module 

https://agenda.infn.it/event/35597/timetable/?view=standard_inline_minutes#121-material-measurement-of-an


BACKUP
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MALTA history



21G. Gustavino

MALTA read-out architecture

Novel asynchronous readout architecture for 
high hit rate capability: 

data transmitted asynchronously (no clock) 
over to end of column 
latency: ~ few ns 
output rate: >>100 MHz 
hit coordinates transmitted through 37 
parallel output signals
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Czochralski geometry
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MALTA Telescope - specifications



cascode

enlarged

 2nd prototype of MALTA family 


Improved FE:


enlarged transistors  & cascode stage


lower noise & higher gain 


enables operating the chip at lower threshold (down to O(100) e-)


increases sensitivity to small signal


 higher radiation tolerance


with same configuration (Ref. JINST 15 (2020) 02)  

std. transistors: thr = 340 el. , enlarged transistors = 200 el. 

eff @ 1x1015 neq/cm2: std transistors=87%, enlarged transistors =98% 


improve speed of analog FE
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MALTA2
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• <ENC> = 9.3 e- 
• RMS = 3.5 e-  

• <ENC> = 9.7 e-  
• RMS = 2.25 e-

Comparison of MALTA & MALTA2  
at compatible threshold (~340 e-) 

224 x 512 pixels

Malta2 public plots

IEEE Trans. Nucl. Sci. , vol. 69, no. 6, pp. 1299-1309, June 2022

https://arxiv.org/abs/1909.11987
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/Malta2PublicPlots
https://ieeexplore.ieee.org/document/9764367


Time-walk of FE measured using special pixels with analog output monitoring. 

time for amplifier output to reach discriminator threshold, depends on charge deposition. 
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MALTA2 Timing: Front End 

Sensor exposed to 90Sr source

MIP-like signals, avg. deposition ~1800 e- 


90% of hits arrive within 25 ns window 
in-time threshold ➡ ~200 e− 

largest deposited charges ➡ time-walk ~10 ns. 

small charge deposition attributed  
to charge-sharing effects 


small signals from pixel corners arrives later


IEEE Trans. Nucl. Sci. , vol. 69, no. 6, pp. 1299-1309, June 2022

LHC bunch crossing window: 
25 ns from fastest signals

charge sharing effect 30 μm EPI

https://ieeexplore.ieee.org/document/9764367
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MALTA2 Timing front end jitter

Set of measurements to isolate individual contributions:

in-pixel charge injection

chip interfaced with picoTDC (3 ps resolution)

Measuring time jitter dominated by FE*

varying between  
4.7 (100 e-) to 0.16 ns (> 1200 e-) 
as injected charge increases


500 ps for 500 e-

uniform response across the entire chip

single pixel
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]

 Injected charge [e-]*time jitter of the reference pulse is < 100 ps

IEEE Trans. Nucl. Sci. , vol. 69, no. 6, pp. 1299-1309, June 2022

https://ieeexplore.ieee.org/document/9764367
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In-pixel efficiency
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Summary plots
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Back Metallisation
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MALTA2, Cz, 100µm, H-dop, NGAP


conductive glue, 1015 1 MeV neq/cm2, Vsub = -12 V

Alluminium layer
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High vs Very High n- doping layer

Larger noise is observed for the MALTA2 with the very high doping of the n− layer. 

This effect is correlated to the increase in capacitance due to the thinner depletion zone  
around the collection electrode for a higher doped n− layer 



