16-20 October 2023, Sestri Levante (GE), Italy International Workshop on Vertex Detectors

Recent results from MAPS prototypes for ITS3

Anna Villani on behalf of the ALICE collaboration

Outline

- ITS3: The upgrade of the ALICE Inner Tracking System
- The 65 nm CMOS process
- Prototypes for the ITS3
- Results from laboratory characterization and in-beam measurements

ALICE Inner Tracking System for LHC Run 4

Key elements:

- 6 large-area O(10×26 cm²), ultra-thin (≤50 µm), flexible MAPS sensors
- Closer to the interaction point: 24 mm (ITS2) → 18 mm
- Reduced and more uniform material budget:
 0.3% (ITS2) → 0.05% X₀/layer

Performance improvements:

- Tracking efficiency
- Pointing resolution

Mechanical mockup of three ITS3 half-layers, Engineering Model 1

~26 cm

See F. Krizek's talk: "ITS3, the ALICE Vertex detector for LHC Run 4"

- Tower Partners Semiconductor Co. (<u>TPSCo</u>) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- Chosen for ALICE ITS3 detector and under study by the <u>CERN EP R&D</u> on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption

- 5 µm 2D spatial resolution
- Large wafers (Ø 300 mm)

- Tower Partners Semiconductor Co. (<u>TPSCo</u>) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- Chosen for ALICE ITS3 detector and under study by the <u>CERN EP R&D</u> on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption

- $5 \,\mu m \, 2D$ spatial resolution
- Large wafers (Ø 300 mm)

Charge collection faster and more efficient

Three process options explored:

- Tower Partners Semiconductor Co. (<u>TPSCo</u>) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- Chosen for ALICE ITS3 detector and under study by the <u>CERN EP R&D</u> on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption

- $5 \,\mu m \, 2D$ spatial resolution
- Large wafers (Ø 300 mm)

Charge collection faster and more efficient

Three process options explored:

- Tower Partners Semiconductor Co. (TPSCo) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- Chosen for ALICE ITS3 detector and under study by the CERN EP R&D on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption

- 5 μm 2D spatial resolution
- Large wafers (Ø 300 mm)

Three process options explored:

Charge collection faster and more efficient

- Tower Partners Semiconductor Co. (TPSCo) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- Chosen for ALICE ITS3 detector and under study by the CERN EP R&D on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption

- 5 μm 2D spatial resolution
- Large wafers (Ø 300 mm)

Three process options explored:

Charge collection faster and more efficient

- Tower Partners Semiconductor Co. (<u>TPSCo</u>) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- Chosen for ALICE ITS3 detector and under study by the <u>CERN EP R&D</u> on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption

- 5 µm 2D spatial resolution
- Large wafers (Ø 300 mm)

Three process options explored:

- Tower Partners Semiconductor Co. (<u>TPSCo</u>) 65 nm CMOS imaging process for Monolithic Active Pixel Sensors (MAPS)
- Chosen for ALICE ITS3 detector and under study by the <u>CERN EP R&D</u> on monolithic pixel sensors

Key advantages:

- High radiation hardness
- Low power consumption

- 5 µm 2D spatial resolution
- Large wafers (Ø 300 mm)

Three process options explored:

MLR1: first submission in 65 nm

18/10/2023

- Multiple Layer Reticle 1 (MLR1), received in Sep. 2021
- Many prototypes:
 - Transistor test structures \rightarrow radiation hardness studies
 - Diode matrices \rightarrow charge collection studies
 - Analog building blocks
 - Digital test matrices

MLR1 sensor prototypes

MLR1 sensor prototypes

MLR1 sensor prototypes

18/10/2023

- Laboratory measurements:
 - Definition of the operating conditions
 - Response to X-ray: ⁵⁵Fe source and fluorescence photons
- Test-beam campaigns @DESY, @MAMI, @CERN PS, @CERN SPS

PMOS

electrode

- ⁵⁵Fe source measurements:
 - Standard process \rightarrow relevant charge sharing
 - Modified process → complete depletion of the active layer, less charge sharing

electrode

- ⁵⁵Fe source measurements:
 - Standard process \rightarrow relevant charge sharing
 - Modified process → complete depletion of the active layer, less charge sharing
 - Modified with gap → improved modified process, optimal charge collection

Analog Pixel

Structure

Test

- Non-Ionizing Energy Loss (NIEL) affects mainly the charge collection process
- ⁵⁵Fe source measurements at 14° C, pixel pitch 15μm

APTS SF: NIEL radiation hardness

- Non-Ionizing Energy Loss (NIEL) affects mainly the charge collection process
- 55 Fe source measurements at 14° C, pixel pitch 15µm
 - Beyond the requirements for ITS3

- Non-Ionizing Energy Loss (NIEL) affects mainly the charge collection process
- ⁵⁵Fe source measurements at 14° C, pixel pitch 15μm
 - Beyond the requirements for ITS3, still operational after 10¹⁶ 1MeV n_{eq}cm⁻²

- Non-Ionizing Energy Loss (NIEL) affects mainly the charge collection process
- Total Ionizing Dose (TID) radiation affects the in-pixel front-end \rightarrow studied with DPTS

• In-beam measurements: detection efficiency

TERMESTER TRUESTER

- In-beam measurements: detection efficiency
- Functional characterization: Fake Hit Rate (FHR)

TERMESTER TRUESTER

- In-beam measurements: detection efficiency
- Functional characterization: Fake Hit Rate (FHR)

VICTOR X XIV

- In-beam measurements: detection efficiency
- Functional characterization: Fake Hit Rate (FHR)

Digital Pixel Test

• Efficiency higher than 99% in a wide range of thresholds

- Efficiency higher than 99% in a wide range of thresholds
- Efficiency of 99% up to 10^{15} 1MeV n_{eq} cm⁻²

- Efficiency higher than 99% in a wide range of thresholds
- Efficiency of 99% up to 10¹⁵ 1MeV n_{eq}cm⁻²
- Efficiency of 99% at ITS3 radiation level

• In-beam measurements

• In-beam measurements: spatial resolution

Digital Pixel Test Structure

• In-beam measurements: spatial resolution and average cluster size

Digital Pixel Test Structure

• In-beam measurements: spatial resolution and average cluster size

Digital Pixel

Structure

Test

- In-beam measurements: spatial resolution and average cluster size
 - Spatial resolution better than the binary resolution

- In-beam measurements: spatial resolution and average cluster size
 - Spatial resolution better than the binary resolution
 - Not affected by the irradiation

MIP energy loss

 Compatibility of MIP energy loss measurements between different MLR1 test structures (APTS SF, DPTS, CE65)

• Fluorescence photons from Sn target

X-ray beam

•

Fluorescence photons from Sn target

18/10/2023

18/10/2023

18/10/2023

Large-area MAPS

NO

Large-area MAPS characterization

Large-area MAPS characterization

Large-area MAPS characterization

18/10/2023

Large-area MAPS characterization

55

MOSS in-beam measurements

anna.villani@cern.ch - VERTEX 2023 - MAPS prototypes for ITS3

0

MOSS

MOSS in-beam measurements

18/10/2023

MOSS in-beam measurements

18/10/2023

- An **innovative vertex tracker** will be installed in 2026 for the ALICE Experiment. It will be made of large-area, flexible, bent **MAPS detectors**.
- The activities towards ITS3 are going on as scheduled:
 - The 65 nm CMOS process has been validated
 - The radiation hardness for both TID and NIEL (up to the expected level for the ITS3 of 10 kGy and 10¹³ 1 MeV n_{eq} cm⁻²) was verified for the first test structures
 - An excellent response to X-rays in terms of energetic resolution was obtained
 - First tests on **stitched sensor** are ongoing
- The **ITS3** technology will be the **starting point** for the development of the new tracker for the future experiment **ALICE3**, proposed for run 5 and 6 of LHC

DPTS: TID radiation hardness

- DPTS performance with a TID radiation level above the ITS3 limit (10 kGy):
 - Efficiency of 99% at 500 kGy TID without annealing
 - Efficiency of 99% at 5 MGy TID after 2 months

DPTS: power consumption

- ITS3 power consumption requirement: $\leq 40 \text{ mW/cm}^2$
- Lowest possible setting: $I_{bias} = 20 \text{ nA} \rightarrow \text{power consumption} = 10 \text{ mW/cm}^2$

MOSS test system

Bent ITS3 prototypes

