

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

European Research Council Established by the European Commission

NONDLITHÍN - **Picosecond** Time Stamping in Fully Monolithic Highlygranular Pixel Sensor

Matteo Milanesio on behalf of the MONOLITH team

Université de Genève

VERTEX 2023 - 32nd International Workshop on Vertex Detectors

The MONOLITH ERC Project

MONOL

Monolithic silicon sensor able to:

- measure precisely the 3D spatial position of charged particles
- provide picosecond time resolution

Funded by the H2020 ERC Advanced grant 884447, July 2020 - June 2025

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

The MONOLITH ERC Project

* * Curopean Research Council Established withe European Commission

Funded by the H2020 ERC Advanced grant 884447, July 2020 - June 2025

Matteo Milanesio - Université de Genève

SiGe BiCMOS Technology

- SiGe HBT = BJT with Germanium as base material:
 - higher doping in base possible
 - thinner base
 - reduced base resistance R_b
- Grading of Ge doping in base:
 - charge transport in base via drift
 - reduced charge transit time in base
 - high current gain β

Leading-edge IHP SG13G2 technology: 130 nm process featuring SiGe HBT

 $ENC_{series\ noise} \propto \sqrt{k_1 \frac{C_{tot}^2}{\beta} + k_2 R_b C_{tot}^2} \implies \sigma_{jitter} = \frac{\sigma_V}{\underline{dV}} \approx ENC * Rise\ Time$

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

SiGe BiCMOS prototypes

Test Beam: Experimental Setup

- October 2022: SPS Testbeam with 180 GeV/c pions
- Measure efficiency and time resolution (results in Testbeam of 2022 Prototype)

- **<u>UNIGE FE-I4 telescope</u>** to provide the spatial information ($\sigma_{x,v} \sim 10 \ \mu m$)
- Two PMT-MCPs (σ_{t} ~5 ps) to provide the timing reference

Matteo Milanesio - Université de Genève

20 ps

- Hexagonal pixels 65µm side
- improved electronics
- 50µm epitaxial layer (350Ωcm)

Efficiency Results

- The apparent degradation at the edges is due to the ~10 µm resolution of the telescope
- Selection of two triangles:
 - · representative of the whole pixel
 - unbiased from the telescope resolution

- Large plateau of 99.8% efficiency
- + $\sigma_V \approx 1.4 \text{ mV} \approx 100 e^-$

Time Resolution Results

Large plateau of 100 V with ~20 ps

- 20 ps at 2.7 W/cm² 50 ps at 0.1 W/cm²
- More than a factor 2 improvement w.r.t. the **previous prototype**

SiGe BiCMOS Radiation Hardness

UNIVERSITÉ

DE GENÈVE

erc

European Research Counci

Matteo Milanesio - Université de Genève

nucléaire et corpusculaire

Time Jitter After Irradiation

- The time jitter with ⁹⁰Sr increases
 from 21 ps (not irradiated) to 56 ps (at 10¹⁶ n_{eq}/cm²) at HV = 200 V and 0.9 W/cm²
- The time jitter can be reduced to 40
 ps by tuning V_{CCA} and HV

Laser Measurements

- Pulsed Infrared laser:
 - Intrinsic jitter of 100 fs
 - repetition frequency of 80 MHz
- Time coincidence between two of our samples:
 - "Reference" receiving always large laser pulse producing 17k electrons
 - "DUT" receiving variable laser power, to study the performance vs. amplitude

MON

Matteo Milanesio - Université de Genève

Laser Results

Time Resolution [ps]

Time resolution of 3 ps with 11k electrons (4 MIPs)

MONOLITH prototype (2022) - no gain layer 45 $P_{density} = 2.7 \text{ W/cm}^2$ CERN SPS Testbeam 40 HV = 200 V Laser Measurements 35 $\sigma_{t, \text{ Testbeam}}^2$ - $\sigma_{t, \text{ Laser}}^2$ 30 25 20 "Landau" Contribution 15 10 **Preliminary** 50 100 150 Amplitude [mV]

20 ps of Charge Collection Noise

in a 50 µm-thick sensor

• Limit to the time resolution at high amplitudes -> PicoAD[©]

MOND

Matteo Milanesio - Université de Genève

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

The MONOLITH ERC Project

to the stabilished by

MONOLITH

Funded by the H2020 ERC Advanced grant 884447, July 2020 - June 2025

Matteo Milanesio - Université de Genève

PicoAD[©] Concept

- Multi-Junction Pico-Avalanche Detector (patented here)
- Continuous and deep gain layer
 - de-correlation from implant size/ geometry -> high pixel granularity possible (enhance spatial resolution)
 - only small fraction of charge gets amplified -> reduced charge collection noise (enhance timing resolution)

FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

SiGe BiCMOS prototypes

MONOLITI

Matteo Milanesio - Université de Genève

Efficiency and Time Resolution

Similar experimental setup with FE-I4 telescope: Testbeam of PicoAD

Future prototypes

Summary and Outlook

- The PicoAD[©] monolithic proof-of-concept prototype works. The introduction of a deep gain layer improves the performances:
 - Efficiency = 99.9% including inter-pixel regions
 - Time resolution $\sigma_t = (17.3 \pm 0.4) \text{ ps}$
- Development of picosecond TDC (patented here) for fully monolithic chip

erc

European Research Counci Established by the European Commission

Matteo Milanesio - Université de Genève

DE GENÈVE FACULTÉ DES SCIENCES Département de physique nucléaire et corpusculaire

UNIVERSITÉ

Thanks for your attention

Established by the European Commission

Giuseppe lacobucci • project P.I. System design

Thanushan Kugathasan Lead chip design Analog electronics

Roberto Cardella Analog electronics Digital electronics

Matteo Milanesio

 Laboratory test Data analysis

Antonio Picardi Chip design • Firmware

Jihad Saidi Laboratory test Data analysis

Carlo Alberto Fenoglio Chip design Firmware

Jorge Sabater Iglesias **Detector Simulations**

Lorenzo Paolozzi Sensor desian Analog electronics

Mateus Vicente System integration Laboratory test

Théo Moretti Laboratory test Data analysis

Rafaella Kotitsa Sensor simulation

Luca lodice · Chip design Firmware

Didier Ferrere System integration Laboratory test

Board design RO system

Marzio Nessi

CERN & UNIGE

Swiss National

Science Foundation

Roberto Cardarelli **INFN Rome2 & UNIGE**

Holger Rücker IHP Mikroelektronik

CATTRACT

Matteo Elviretti **IHP** Mikroelektronik

Sergio Gonzalez-Sevilla

System integration

Stéphane Débieux

Laboratory test

Board design

RO system

Matteo Milanesio - Université de Genève

Yannick Favre

Funded by:

Sinergia

2019->2022: Improvements

- Same matrix configuration as previous, but
 - Substrate: 50 Ωcm → 350 Ωcm epi layer, 50 μm thick on low-res (1 Ωcm) substrate
 - smaller pixel capacitance
 - depletion 23 μ m \rightarrow 50 μ m
 - much larger voltage plateau
 - can operate sensor with v_{drift} saturated everywhere
 - Preamp and driver voltage decoupled:
 - was limiting optimal amplifier operation
 - cross-talk removed
 - Optimised FE layout, "differential" output, highfrequency cables:
 - better rise time (600 ps \rightarrow 300 ps)

Time Resolution Distributions

- Very Gaussian distributions after time walk correction
- Simultaneous fit to extract the time resolution of **DUT**, **MCP0**, **MCP1**^[3]:

MCP0: $\sigma_t = (3.6 \pm 1.5) ps$ **MCP1**: $\sigma_t = (5.0 \pm 1.1) ps$

DUT:
$$\sigma_t = (20.7 \pm 0.3) ps$$

MON

Matteo Milanesio - Université de Genève

Radiation Hardness

16 90Sr data 14 T = -35 °C P_{density} = 0.90 W/cm² 12 Chips Not Irradiated Amplitude = (8.8 ± 0.7) mV 10 ← HV = 250 V, V_{CCA} = 2.0 V 10¹⁴ 10¹⁵ 10¹⁶ Fluence [n_/cm²] MONOLITH prototype2 (2022) - no gain layer 25 90Sr data T = -35 °C 20 P_{density} = 0.90 W/cm² 15 **Chips Not Irradiated** Slope = (11.3 ± 0.7) mV/ns 10 HV = 200 V, V_{CCA} = 1.8 V ← HV = 250 V, V_{CCA} = 2.0 V 10¹⁵ 10¹⁴ 10¹⁶ Fluence [n_/cm²]

MONOLITH prototype2 (2022) - no gain layer

NOLITH

22

Established by the European Commission

Matteo Milanesio - University

Radiation Hardness

Département de physique nucléaire et corpusculaire **Efficiency of Irradiated Samples**

Very preliminary

August 2023 testbeam at CERN SPS

Board irradiated $1 \times 10^{16} n_{eq}/cm^2$: efficiency still $\ge 99\%$ for HV ≥ 250 V at 0.9 W/cm²

MONOLITH prototype (2023) - no gain layer 100_F Efficiency [%] 98 not irradiated 96 94 $V_{th} = 7\sigma_v$ 92 $P_{density} = 0.87 \text{ W/cm}^2$ 90 1×10^{16} n_{eq}/cm² 88 86 very preliminary 84 CERN SPS Testbeam: 120 GeV/c pions 82 160 180 200 220 240 260 280 300 **T**40 High Voltage [V]

Matteo Milanesio - Université de Genève

Gain Measurements

- X-rays from ⁵⁵Fe radioactive source:
 - ~5.9 keV photons with point-like charge deposition
- Characteristic double-peak spectrum (PicoAD Working Principles)
 - photon absorbed in drift region
 - holes drift through gain layer and multiplied
 - first peak in the spectrum
 - photon absorbed in absorption region
 - electrons drift through gain layer and multiplied
 - second peak in the spectrum
- Gain up to ≈ 20 for ⁵⁵Fe X-rays obtained with HV = -125 V and T = -20 °C (<u>Gain</u> <u>Measurements</u>)

MONOL

Gain Results

Gain up to ≈ 20 for ⁵⁵Fe X-rays obtained at HV = 125 V and T = -20 °C

- Evidence for gain suppression due to spacecharge effects in the case of ⁵⁵Fe X-rays
- We estimated that ⁵⁵Fe gain of ≈ 20 corresponds to gain 60–70 for a MIP

Matteo Milanesio - Université de Genève

PicoAD: Efficiency Maps

 The apparent degradation at the edges is due to the finite resolution of the telescope (~10 µm)

- Selection of two triangles:
 - representative of the whole pixel
 - **unbiased** from the telescope resolution

014

67<u>4</u> K

PicoAD[©]: Time Resolution Distributions

- Time Of Arrival as a time at a Constant Fraction
- Distributions after time-walk correction
- The distributions are gaussian
 - ~2-4 % of the entries are in nongaussian tails
- The three σ_{Gauss} from the fits give the timing resolution of:
 - the DUT
 - the two LGADs

Position Within the Pixel

- Best time resolution: (13.2 \pm 0.8) ps within 25 μ m from the pixel center
- PicoAD[©] proof-of-concept: small degradation of the performance towards the edge of the pixel

Position Within the Pixel

2022 prototype is much less dependent on the pixel position

Matteo Milanesio - Université de Genève

Benefits of Using Hexagonal Pixels

- Three possible regular shapes to use:
 - equilateral triangles
 - squares
 - regular hexagons
- Hexagons have the highest angles (120°) -> electric fields in the corners are better under control
- Moreover, the same amount of pixels can fits in less space than squares

