

MoTiC: a Monolithic Pixel Detector with Timing

S. Burkhalter, L. Caminada, <u>A. Ebrahimi</u>, W. Erdmann, H-C. Kästli, B. Meier, B. Ristić, T. Rohe, R. Wallny

VERTEX 2023 32nd International Workshop on Vertex Detectors Sestri Levante - 2023-10-18

Introduction

- The PSI High Energy Physics group in collaboration with ETHZ has a generic R&D program for DMAPS since 2019
- Different technologies are being evaluated
- Goal: position sensitive particle detectors featuring timing
- Aiming for
 - Spatial resolution $< 10 \mu m$
 - Timing resolution < 1ns
- Possible applications at PSI in-house experiments

MoTiC: Monolitic Timing Chip

- Modified LFoundry 110nm process
- Full frame readout with external trigger
- In-pixel discriminators
- 1 TDC shared by 4 pixel
- Sensing elements designed by ARCADIA
- Small electrodes with small capacitance
- Back-side processing for guard rings and metal contacts
- Depletion from back-side
- Thickness: 48, 100, 200µm

Same sensor 6 different amplifiers 80 columns, 64 rows 50 x 50µm²

Same amplifier (C)

5 different sensors

50 x 50µm²

80 columns, 48 rows

MoTiC A

Beam Test at DESY II

- Adenium Telescope
 - 6 planes of Alpide sensors
 - 29.24µm x 26.88µm pixels
 - 50µm thick
 - Spatial resolution < 5µm
- Non-irradiated samples
- 4GeV electrons
- Room temperature
- Offline Threshold: 8 x RMS
- Analysed using (modified) Corryvreckan
- Some further analysis in Python

- Larger than 1 at vertical incidence
 - Also seen in TCT measurements
 - Confirmed by ARCADIA simulations
- Low electric field below the p-wells
 - \rightarrow longer charge collection time
 - $\rightarrow\,$ higher probability of diffusion
- MoTiC B has relatively low-gain preamplifier
 - $\rightarrow\,$ many pixels don't reach the threshold
 - → smaller cluster size

- Larger than 1 at vertical incidence
 - Also seen in TCT measurements
 - Confirmed by ARCADIA simulations
- Low electric field below the p-wells
 - \rightarrow longer charge collection time
 - \rightarrow higher probability of diffusion
- MoTiC B has relatively low-gain preamplifier
 - \rightarrow many pixels don't reach the threshold
 - → smaller cluster size

MoTiC A

Cluster Charge

- Pulse-height distribution distorted in MoTiC
 - Saturation of high-gain amplifiers
 - Flat response for small amounts of charge
- Only 4-pixel clusters considered
- Amplifiers with additional feedback capacitor have lower pulse heights
- Preamlifier AC has a lower gain by a factor of ~3 due to large input capacitance
- Charge scales linearly with thickness
 - Thickness ratios: 1 : 2.08 : 4.17
 - Most probable values: 1 : 1.93 : 4.25

- $N_{\rm assoc.clusters}$ $N_{\rm tracks}$
- Offline threshold
- Hit efficiency > 99.8%
- MoTiC A
 - 200 µm thick
 - Max. efficiency at $V_{\text{bias}} > -55V$
- MoTiC B
 - Max. efficiency at $V_{\text{bias}} > -50V$
 - AC variant efficient at $V_{\text{bias}} > -40V$

Sensor 4

Sensor A

90

80

Spatial Resolution

- $\sigma_{hit} = \sqrt{RMS_{trc}^2 \sigma_{TEL}^2}$
- Center of Gravity
- Truncated RMS of DUT residuals
 - Discard values outside ±6 RMS
- Resolution at vertical incidence better than resolution of binary readout (14.4µm)
- Optimal angle differs from arctan(pitch/thickness)
- Best resolution: 4.8µm for the 200µm thick sensor

Type	t / $\mu {\rm m}$	Angle / deg	$\sigma_{residual}$ / $\mu{\rm m}$	σ_{tel} / $\mu{\rm m}$	σ_{DUT} / $\mu{\rm m}$
MoTiCv1 A	200	0	7.7 ± 0.1	4.4 ± 0.5	6.3 ± 0.4
MoTiCv1 A	200	8	6.5 ± 0.1	4.4 ± 0.5	4.8 ± 0.5
MoTiCv1 A	100	0	9.0 ± 0.1	4.4 ± 0.5	7.9 ± 0.3
MoTiCv1 A	100	21	6.9 ± 0.1	4.4 ± 0.5	5.3 ± 0.4
MoTiCv1 A	48	0	11.5 ± 0.1	5.0 ± 0.5	10.4 ± 0.3
MoTiCv1 A	48	37	10.1 ± 0.1	5.0 ± 0.5	8.8 ± 0.3

Time Measurements - ATDC

- Every 4 pixels share a TDC
- $t_{TDC} = (cnt_{OSC} \times \tau_{OSC}) t_{ramp}$
- Timing resolution
 - 10 ps test structure
 - 40 ps in pixel
- No clock at test beam
- Hit FF used as start
- Signal from a dedicated fast trigger system used as stop
 - Coincide of 2 dual readout scintillators
 - Jitter less than 200ps

Time Measurements

 1.47 ± 0.05

11 | Ali Ebrahimi aliakbar.ebrahimi@psi.ch | 2023-10-18 | MoTiC

 $C(C_{fb})$

Drift Time Measurements

- MoTiC A
- 1-pixel clusters
- Consider only a radius of 10µm
 → no timewalk
- Pulse height > 800 ADC
- ~ 5ns drift time from corners
- Compatible with ARCADIA simulations and measurements

- A DMAPS prototype chip using modified LFoundry 110nm process has been developed
- Comprises different amplifier and sensor designs
- Charactrized using partilce beams
 - Hit efficiency > 99.8%
 - Spatial resolution < 5µm
 - Coarse timing resolution < 1.2ns

Hit In/Efficiencies – Online Threshold

- Online threshold
- Readout can trigger comparator
- Varying gain leads in different effecitve threshold
- Results in much higher inefficiency in preamplifier C
- Efficiencies:
 - A, A(Cfb) and B > 99.7%
 - B(Cfb) > 99%

PAUL SCHERRER INSTITUT

Pulse Height / Online Threshold

Table 6.1.: Thresholds applied in runs with online threshold. The thresholds in terms of V_{cal} and an approximate conversion to electrons are also shown.

Preamplifier	Threshold / mV	V_{cal} Threshold / mV	Threshold / $\mathrm{e^-}$
А	804	530	1800
A (Cfb)	804	904	3100
В	785	704	2400
B (Cfb)	785	1118	3900
С	757	>1200	>4100
C (Cfb)	757	>1200	>4100

Telescope Alignment

- Using General Broken Lines (GBL)
- Itterative with χ2 and spatial cut down to pixel pitch
- Tails from delta electrons
- Z-position measred with hand, optimized by scan

Telescope Alignment Rungroup 14 Plane n: Mean/Standard Deviation , Number of tracks: 214180

DUT Hit Discrimination

- Online threshold has to be high due to problem during readout
- Used offline threshold
- All the pixels are read for each trigger
- Pedestal calculated for each pixel
- 8 x RMS offline threshold, calculated per pixel
- A few hundred electrons electrons

- Electron / positron beam
- Circumference: 292.8 m
- Energy cycle: 12.5 Hz (50 Hz /4)
- Revolution frequency: 1 MHz
- Bunch length: 30 ps
- Energy: 1 to 6 GeV
- Divergence: 1 mrad
- Primary particles hit a carbon fiber, generates bremsstrahlung photons
- A metallic target converts the photons t electrons/positrons
- Magnet current selects the beam momentum

LF110 Process Overview

PAUL SCHERRER INSTITUT PAUL SCHERRER INSTITUT Preamplifier Schematics

